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CHAPTER 1:    INTRODUCTION 

 
     RADAR (Radio Detection And Ranging) is an electronic device for measuring the 
position and velocity of a moving object, and from these parameters deduces certain 
characteristics of that object. A RADAR operates by transmitting an electromagnetic wave 
and sensing the reflected energy in space.  The distance or range to the object from the 
transmitter is determined by measuring the time taken by the pulse to travel to the object 
and back.  Since the electromagnetic wave travels at the speed of light, the range is given 
by   
 

                                                            
2

tcRange ∆
= ,                                               (1-1) 

 
where the speed of light 8103 ⋅=c  m/sec and t∆  is the round trip travel time of the wave 
transmitted and reflected back to the source. In most cases, the transmitted wave is 
periodic and the time elapsed can be measured from the origin to the temporal location of 
the peak of the reflected signal. If a transmitted pulse is received after the second 
transmission, the measured propagation time will not be the correct one since the 
reference-transmitted pulse is not the right one. This situation occurs also in dwelling 
range ambiguities. The maximum range without ambiguity would depend on how 
frequently the transmission occurs. If the pulse repetition frequency (PRF) of the 
transmitted signal is low and the time interval between the two transmissions is long, the 
maximum range that can be measured could be large. However, if the pulse repetition 
frequency (PRF) of the transmitted signal is high, the maximum unambiguous range that 
can be measured will be small.  Therefore, the maximum range maxr  without any 
ambiguity is given by 
 

                                                               
rf

cr
2max = ,                                                      (1-2) 

    
where rf  = frequency of the transmitted signal.  If the target is located beyond this 
maximum range, the system will predict that the target is closer than the actual position 
due to folding over of the signal. 
     The velocity of the target can be determined from the change in the carrier frequency 
between the transmitted and received signals (Doppler shift). The maximum measurable 
velocity without any ambiguity also depends on the PRF of the transmitted pulse. If the 
Doppler frequency of the target is beyond the transmitted PRF, aliasing may occur and the 
real velocity of the target cannot be obtained. This is called the Doppler ambiguity.  Here, 
the term “Doppler frequency” is used to predict the velocity of the target from the 
frequency change of the transmitted pulse. Obviously, use of a high frequency of the 
transmitted signal could work for faster targets. The maximum Doppler frequency without 
any ambiguity has the same meaning as an alias free sampling used in the Nyquist 
theorem.  That is 
 



 

 

 

2

                                                         
2

0
0maxmax

λ
λ rffV == ,                                       (1-3) 

 
where  maxV = the maximum velocity of the target, 
            maxf = the maximum Doppler frequency, 
           0λ   = the wavelength corresponding to the carrier frequency of the radar. 
In other words, a radar operating with a low PRF has a large unambiguous range but is 
ambiguous in Doppler and in the high PRF mode there is ambiguity in range but not in 
Doppler.  Therefore the trade-off between Doppler ambiguity and range ambiguity is 
given by 
 

 (Maximum range)(Maximum Doppler frequency)
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00 λλ cf
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     In real situations, for airborne radars, we do not have much clutter in the measurement 
of Doppler since there are few objects moving with the same velocity as the target.  
However, more clutter would be found in the measurement of range and that uses low 
PRF rather than high or medium PRF radars. To improve the maximum resolvable 
Doppler frequency (or range), many techniques have been proposed.  They are listed as 
follows. 

• Linear carrier FM system [1,2] 
• Sinusoidal carrier FM system [1,2] 
• Use of a Barker coding system [2] 
• Multiple PRF or Staggered PRF systems [1,2] 

The best choice depends on the specific application and on the choice of the constraints.  
Generally speaking, a multiple PRF system performs better than other systems [1].  Using 
several fixed PRFs enables one to discriminate the fold-overs in a single PRF system by 
comparing the responses obtained for the different PRFs. Thus one can eliminate either 
Doppler or range ambiguities. The details of a multiple PRF or staggered PRF system are 
described in the later sections.  
     There are some prior methods for resolving Doppler and range ambiguities in a 
multiple PRF systems. Ludloff and Minker [3] presented a curve of reliability of the 
velocity measurement from simulations. Vrana [4] dealt with the problem in a statistical 
manner.  The two steps used to get the optimum estimation in Vrana’s method depends on 
making a proper decision about resolving the ambiguity of the estimate and smoothing of 
the data.   
     In many papers, the Chinese remainder (CR) theorem, which will be explained later in 
the report, has been a commonly used algorithm to resolve Doppler and range ambiguities 
[1,2].  In spite of its wide usage, the CR theorem has some significant defects when 
applied to the multiple PRFs systems. First, it can be useful when there is a single target 
only. If there are several targets or interferences, which have the same received power at 
one look angle, the results of the CR theorem would be ambiguous since there will be too 
many folded Doppler frequencies to be resolved.   
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     Moreover, as illustrated in Figure 1.1, if the measured frequency fold-over occurs in 
the region of the main lobe clutter, which is due to the motion of the aircraft itself with 
respect to the ground, the resolution of the target is not clear.  Figure 1.1(a) shows a target 
contact and the clutter due to the ground.  The various parts of the spectrum would be 
folded due to the PRFs used and would be measured as in Figures 1.1(b) and (c). If the 
image falls into the clutter region, as shown in Figure 1-1(c), the detection cannot be 
easily performed.  Other problems with this approach are that a small range error on a 
single PRF can cause a large error in the resolved range and there is no indication that this 
has occurred. 
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Figure 1.1 Drawback of using the CR theorem (when the target contact folds over into the 
clutter region).  (a) is the actual contact case, (b) folding over has occurred due to PRF1 in 
which case the measurement is not in the clutter region and (c) folding over has occurred 
due to PRF2 where the measurement is in the clutter region. 
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     To overcome this problem due to the use of the CR theorem, a clustering algorithm has 
been proposed by Trunk and Rockett [5].  They used a variance for each PRF data to test 
if it is the real Doppler or range. This method will be explained in detail in section 3.2.  
Even with the clustering algorithm, the fundamental drawback of the CR theorem based 
approach cannot be resolved since the solution is obtained through numerical techniques.  
However, none of the methods deals with the problem of obtaining a single estimate from 
the plethora of unevenly spaced data obtained for a multiple PRF RADAR system. As 
illustrated in Figure 1.2, the previous researches separate the solution space for each PRF 
and consider it as a combination of single PRF systems.  In the frequency domain, Figure 
1.2(d, e, f) has a common peak at around 100rad/sec.  Instead of dealing with one PRF at a 
time, one can think of assembling the data from all the PRFs simultaneously in the time 
domain as shown in Figure 1.3(a).  The problem of Figure 1.3(a) is then reduced to finding 
the spectrum of an unevenly spaced sampled signal.  If we can find the spectrum of a 
nonuniformly sampled signal, we would not have the problem of having to solve for the 
congruence and deal with the various disadvantages due to the CR theorem.  Moreover, 
the system could deal with multiple targets and it could also resolve the blind speed and 
the blind range problems with the removal of ambiguities.    
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Figure 1.2 Sampled signal at multiple PRFs and their frequency domain response (DFT).  Signal frequency 
was 100 rad/sec and all the frequency domain results are aliased. Observe that (d, e, f) has a common peak 
around 100 rad/sec which is the real frequency.  
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Figure 1.3 Unevenly spaced signal and its spectrum (DFT). 

 
     In this research, we want to obtain a frequency domain response from a nonuniformly 
sampled sequence. Seven methods for unevenly spaced data analysis have been studied in 
this report and summarized. They have also been used to simulate results for a multiple 
PRF case.  The seven algorithms consist of 

• Polynomial interpolation (Lagrange and Cauchy type) 
• Chinese remainder theorem and clustering algorithm 
• Least squares curve fitting of a complex sequence  
• Multi-resolution (Quadrature mirror filter) analysis  
• Iterative method 
• Orthogonal expansion by a set of polynomials (Legendre polynomials and    
      Hermite polynomials) 
• Estimation of an analog frequency 

     Some of these methods generate an evenly spaced sequence from the unevenly spaced 
data. Hence, for those methods, the FFT is then utilized to estimate the frequency 
components from the evenly spaced sequences.  The matrix pencil method [7, 8] can also 
be used to efficiently extract the parameters with a higher resolution of the frequency 
domain sequence obtained from the FFT.  The Matrix Pencil Method has been discussed 
in Appendix B. In Chapter 3, all the above approaches have been described. Computer 
simulated examples have been presented for all of them. The results have been compared 
to investigate which approach is applicable to the radar application. A summary of the 
methods is given in Chapter 4, which is also the conclusion. 
     Additional benefit of using a direct analysis of unevenly spaced data is that it can 
reduce the distortion in the spectrum of a signal affected by noise due to the correlation 
associated with each of the frequency component [11]. It is generally known that if the 
sampling is completely random, and is a Poisson process [9], then the spectrum of that 
sequence is alias free. A proof of this statement is given in the references [12, 13] and a 
sketch of it is given in Appendix A. 
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CHAPTER 2:   DESCRIPTION OF MULTIPLE PRFS SYSTEM 

     In this section, the performances of multiple PRF systems are investigated.  It will be 
seen that they have an enhanced performance when compared to that of a single PRF 
system.  First, consider an ambiguity function (AF) which is a tool often used for 
characterizing ambiguities.  We assumed a transmitted radar signal of the general form 
 
                                                  ( ) ( ) ( )[ ]ttFtatg c Ψ+= π2cos0 ,                                     (2-1) 
 
where ( )a t  is the envelope of the signal; Fc  is the carrier frequency and ( )Ψ t  is the 
phase. If this signal illuminates a target moving at a speed v , the transmitted signal 
undergoes a frequency shift due to the Doppler effect and the mathematical expression for 
the received echo becomes 
 
                                             ( ) ( ) ( )[ ]ααπαα ttFtatg c Ψ+= 2cos, ,                                (2-2)         
 
where α  is a scale factor controlled by the Doppler effect and is given by 
 

                                                                α =
−
+

c v
c v

,                                                        (2-3) 

 
where c = velocity of light. The Doppler frequency of the target is 
 
                                                             ( )F Fd c= −1 α ,                                                   (2-4) 
 
If we pass ( )α,tg  through a signal conditioner, which converts the carrier frequency to the 
intermediate frequency (IF) radar signal and then through a low pass filter, L, to get the 
base band signal, one obtains 
 

                                 ( ) ( )[ ]αα π ,, 2
^

tgeLtg tiFc= ( ) ( ) ( )[ ]ttFi ceta ααπα Ψ+−= 12                             (2-5) 

 
Assume that the phase function ( )Ψ t  is zero and the envelope is a flat topped pulse, so 

that ( ) 1=ta α  and for 2
pTt ≤  where pT  is width of the pulse in a period, (2-5) will 

become 
 

                                                ( ) ( )g t e i F tc
^

,α π α= −2 1 ; 2
pTkTt ≤− ,                               (2-6) 

 
where T  is the period of the base-band pulse and k is an integer. 
     The complex ambiguity function (CAF) of ( )g t  is defined through  
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                                           ( ) ( ) ( )∫
∞

∞−

−=Λ duugtugt αα ,1,,
^^^

.                                      (2-7) 

If α =1 in ( )g u t
^

,− 1  this implies that there is no Doppler shift and the waveform is shifted 
by t  along the u axis. Next, this is multiplied by the original signal and integrated with 
respect to u. This results in the familiar form of an auto-correlation function for each 
Doppler frequency.  If there is no Doppler shift, then the CAF becomes merely an auto-
correlation function and can be used to measure the unambiguous range.  Actually, the 
main lobe of the CAF measures the range ambiguity of a signal when there is no Doppler 
shift.  When t = 0 this implies that there are no range shifts and the unambiguous Doppler 
can be determined from the main lobe of the CAF.  Therefore the CAF measures the 
maximum of the Doppler shift and range which can be resolved by a given signal model. 
The phrase “unambiguous function” is more suitable instead of the ambiguity function 
since a large value of CAF implies a larger domain for the Doppler and the range 
estimation without ambiguity.     
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Figure 2.1.  A baseband rectangular pulse train. 
 
     Figure 2.1 is a baseband time domain signal due to a rectangular pulse train ( )a t .  The 
width of the pulse pT  is 0.2msec and the period T  is 0.5msec (2kHz).  The transmitted 
signal is modulated by ( )tFcπ2cos .  The numerical integration of (2-7) using (2-4) and 
(2-6) is shown in the Figure 2.2(a).  As a result, 
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Figure 2.2(b) provides the corresponding contour plot. The width of the main lobe is 
determined by the duration of the baseband pulse.  
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Figure 2.2  (a) 3 dimensional plot of CAF for the single PRF case (b) Contour plot of 

CAF. 
 

     For a multiple PRF’s CAF, only the envelope term will change and the summation in 
(2-8) shall be computed for different pT s.  Figure 2.3 is the baseband envelope for a two 
PRFs system where 1kHz and 1.5kHz have been chosen as the two PRFs which have the 
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same number of pulses in time as in Figure 2.1 for comparison with a single PRF case.  (2-
7) will become 
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Figure 2.3 A multiple PRF (1kHz and 1.5kHz)  baseband pulse. 
 

Note that the pulse exists for 21 ll ttt <<  and l  goes up to 4 since it is repeated after every 
4 pulses.  Figures 2.4(a) and (b) are the corresponding plots of the contour. By comparing 
Figure 2.2 with Figure 2.4, it is seen that a 2 PRF system performs better than the single 
PRF system since it has a larger unambiguous region and the width of the main lobe is 
wider than that of the single PRF case. One can observe from Figure 2.1 and 2.4 that the 
maximum unambiguous range for the 2 PRFs case has increased to 2.0msec which is 4 
times that of the single PRF case of 0.5msec. Therefore a multiple PRF system would 
have wider unambiguous regions. 
     The maximum resolvable frequency and range in a multiple PRF system is determined 
from the set of PRFs.  Consider the 3 PRFs ( 1PRF , 2PRF  and 3PRF ) which sample the 
radar signal and compare its performance to the single PRF ( 2PRF ) system.  First assume 
that the 3 PRFs are relatively prime numbers with respect to each other.  The maximum 
unambiguous Doppler increases with the product of the PRFs since the frequency 
spectrum from each PRF will coalesce at a frequency multiple of those PRFs.  That is, 
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                                               ID = 
PRF PRF PRF

PRF
1 2 3

2

⋅ ⋅
,                                             (2-10) 

where ID is the maximum Doppler increment. 
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Figure 2.4 (a) 3 dimensional plot of CAF for a 2 PRF system and (b) Contour plot of CAF 
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As an example, the maximum resolvable Doppler frequency of a 4Hz PRF system is 

2
4 Hz from (1-3) and the maximum resolvable Doppler frequency of a 3 PRF system 

consisting of 3, 4 and 5Hz is 2
543 ⋅⋅ Hz.  If the PRFs are not relatively prime numbers, 

the maximum discernable Doppler would be the Least common multiplier (l.c.m) of those 
PRFs.  That is, it will be increased by the factor ID, where 
 

                                        ID = 
( )

2

21 ,...,,..
PRF

PRFPRFPRFmcl N                                         (2-11) 

 
Hence, the performance would be ID times better compared to that of a single PRF 
system, which is PRF2 .  Typically the performance is enhanced by the maximum Doppler 
increment. 
     The maximum resolvable range is also increased.  In terms of PRF, i.e., the range is 
proportional to PRF

1  and the range increment is proportional to the PRF.  When the 

PRFs are relatively prime, the period of the repeating pulse will be the l.c.m of 
1

1
PRF , 

2

1
PRF  and 

3

1
PRF  which is unity.  The performance is enhanced by 

 

                                                       IR = 2

2

1
1 PRF

PRF
= ,                                            (2-12) 

 
where IR is the maximum range increment. 
     It is important to note that it does not matter how many PRFs exist but the 
enhancement in range resolution given by (2-12) occurs when the PRFs are relatively 
prime because  
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21321
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PRFPRFmclPRFPRFPRFmcl .               (2-13) 

 
As an example, consider the maximum resolvable range of the 4Hz system which in 
meters is ( )42 ⋅

c , obtained from (1-2) and the maximum resolvable range of the 3, 4 and 

5Hz PRF system are 2
c  meters.  If the PRFs are not relatively prime numbers, then 

                                 

                                                 IR = ( )
PRF

g c d PRF PRF PRF
2

1 2 3. . , ,
,                                  (2-14) 

 
where g.c.d = greatest common divisor.  Then the maximum resolvable range is the 
maximum range increment times that of a single PRF system of value PRF2 .  The product 
of (2-11) and (2-14) results in a performance enhancement of 
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                                         ID ⋅ IR = 
( )
( )321

321

,,..
,,..
PRFPRFPRFdcg
PRFPRFPRFmcl

                                   (2-15) 

 
times that from a single PRF radar system. 
 
 
 

CHAPTER 3:  DESCRIPTION OF THE VARIOUS METHODS 
 
     In this chapter, various methods to obtain the spectrum from a set of nonuniformly 
sampled data are described. The first class of methods presented process the nonuniformly 
spaced data through a spatial (or time) domain interpolation to a uniformly sampled case 
and then uses the conventional FFT or DFT to get the frequency response. The second 
class of methods directly obtains the spectrum from a set of nonuniformly sampled data. 
The basic polynomial interpolation and the iterative methods fall in the first category, and 
the rest of the methods described in this chapter belong to the second group. Usually, the 
approach using spatial domain interpolation requires much more densely spaced data 
samples which have a greater sampling rate than that of the Nyquist sampling rate to 
provide meaningful results for the spectrum.  
    Note that the Nyquist sampling rate for a nonuniformly sampled data can be defined as 
the average sampling rate of the sequence and it can be shown that if the average sampling 
rate exceeds twice the maximum frequency of the actual signal, then the signal can be 
perfectly recovered [12, 13]. This is an extension of the actual Nyquist sampling theorem 
corresponding to the nonuniformly sampled data case. 
 
 
3.1 INTERPOLATING IN SPATIAL DOMAIN BY POLYNOMIALS 

3.1.1 Lagrange Interpolation Polynomials 
     There are some obvious ways to generate uniformly spaced data from a nonuniformly 
sampled sequence. Interpolation using polynomials is one way to do it. One of the 
simplest and direct interpolation schemes involves the use of the Lagrange interpolation 
polynomial which fits a set of N data points by an (N-1)th degree polynomial where N is 
the given number of data samples. The interpolation may become smooth when there are 
enough data points in one period of the signal. The results of which would be quite 
acceptable if the spacing is not very random (small deviation form uniform spacing).  
However, this approximation merely provides a base line of the interpolation and does not 
exploit any property from the frequency domain like the signal is periodic in nature.  
Previous research has indicated that if the reconstruction of the signal from random 
samples is performed through the use of interpolation by polynomials, the errors in the 
reconstruction are acceptable only if the sampled frequency of the signal components is at 
least four times than that of the Nyquist sampling rate [14, 15]. Once we get the uniformly 
spaced data, the Fast Fourier Transformation (FFT) or the Matrix pencil method can be 
used to estimate the frequency domain parameters. 
     The Lagrange interpolation formula between the sample points evaluates the function 
through the following interpolation 
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where kx  is the location of the nonuniformly spaced sampled points k = 1, …, N, and. 

(fx

                      

( )f xk  is the value of the signal at xk . This amounts to fitting a (N-1)-th degree polynomial 
through the N data points.  One practical problem associated with this technique is that when 
the number of data points becomes large, Equation (3-1-1) has to deal with very large 
numbers because there are coefficients with N-th power of the time argument. This can cause 
numerically unstable results. To prevent the order of the polynomials from being a very large 
number, a time domain scaling can be performed. The value of the function is scaled between 
–1 to 1, while also checking for N so that it does not become a large number. More 
consideration should be given to the edges of the data sequence since at those regions the 
polynomial may not accurately fit the data.     
     As an example consider the following signal 
 
                                               ( ) ixixix

k
kkk eeexf πππ 2425.322 5.22 ⋅⋅−⋅ −+=                                 (3-1-2) 

 
and x is a randomly generated number between –1 to 1.  41 samples have been chosen to make 
the average sampling time to be 0.05 (average sampling frequency = 20Hz). Note that the 
maximum frequency of the signal is 4Hz. It is one-fifth that of the Nyquist sampling rate since 
the signal is complex and in which case the minimum sampling rate for the perfect recovery 
of the signal is equal to the maximum frequency of the signal so as to completely eliminate 
the ambiguities in the results.  
    Note that the spectrum of tje ω  exists only along the positive axis if 0>ω , while the 
spectrum of )sin( tω  exists for both positive and negative frequencies. The various time 
domain signals are shown in Figure 3.1.1 along with the original signal. The corresponding 
spectrum is given in Figure 3.1.2 along with the results for the uniformly sampled data using 
FFT. Decreasing the sampling rate or increasing the signal frequency causes the interpolation 
to become inaccurate.  There is no guarantee of convergence of this process to the original 
signal unless infinite samples in one period are taken.  Generally, these interpolations perform 
poorly in the computation of the spectrum for a nonuniformly spaced signal as compared to 
other methods described in this report. However, this method offers a base line comparison in 
the analysis of nonuniformly spaced data when the sampling rate is much less than the 
Nyquist rate.  In addition, it can also be easily implemented in hardware. 
 
3.1.2 Cauchy’s Method 
     Cauchy’s method is a technique of finding a rational polynomial which will fit a given data 
sequence. Previous researches have successfully interpolated data from an electromagnetic 
system using this approach [16, 17].  A brief introduction and derivation of the Cauchy’s 
method and an application to the nonuniformly sampled interpolation are presented in this 
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section. The main objective of the Cauchy’s method is to find the coefficients and the orders 
of the polynomials for the numerator and the denominator.   
     Assume that the signal can be approximated by the rational polynomial  
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Figure 3.1.1 Use of the Lagrange interpolation polynomial (magnitude only) to a time domain data. 
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Figure 3.1.2   FFT of the time domain interpolated data of Figure 3.1.1 due to Lagrange interpolation 
(magnitude only) 



 

 

 

15

      Then the Cauchy problem can be stated as: Given ( )ixH  for i=1,…,N, find p, q, 

ka (k=0,…,p) and kb (k=0,…,q).  
      By enforcing the equality of both sides in (3-1-3), the result is obtained as 
 
 
                                                       ( ) ( ) ( )iii xBxHxA ⋅=                                              (3-1-4) 
 
or equivalently 
 

( ) ( ) ( ) 01010 =−−−−+++ q
iqiiii

p
ipi xbxHxbxHbxHxaxaa LL  for i=1,…,N.   (3-1-5) 

 
A matrix form of this equation will then become 
 
                                                              bBaA matmat =                                                  (3-1-6)  
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or  
 

                                                         [ ] 0| =⎥
⎦

⎤
⎢
⎣

⎡
−

b
a

BA matmat                                          (3-1-7) 

 
The singular values of [ ]matmat BA −|  can be obtained by using the singular value 
decomposition.  The number of nonzero singular values of [ ]matmat BA −|  will be the sum 
of order of the denominator and the numerator.  It provides some guidance in estimating 
the values of p and q.  If z is the number of nonzero singular values, then p and q should 
satisfy the relationship 
 
                                                             z  =  p + q + 2                                                 (3-1-8) 
  
and p is chosen such that q=p+1. To obtain a and b, apply a QR decomposition to matA .  
That is, 
                                                              0=− BbQRa                                                  (3-1-9) 
 
Since Q is an orthogonal matrix TQQ =−1  and therefore 
 
                                                            0=− BbQRa T                                               (3-1-10) 
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The rank of R is determined by the order of the numerator polynomial which is p+1, and 
(3-1-10)  becomes  
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BQT .  Therefore b can be obtained from the singular 

value decomposition of 22r , i.e.,  
 
                                                       022 =Σ= bVUbr T                                                (3-1-12) 
 
From the theory of total least square (TLS) [18], the solution to (3-1-12) is the last column 
of the matrix V. 
 
                                                               [ ] 1+= pVb                                                     (3-1-13) 
Therefore 
 
                                                           BbQRa T1−=                                                   (3-1-14) 
 
     The same signal presented in the previous section has been used as an example. That is,  
 
                                         ( ) ixixix

k
kkk eeexf πππ 2425.322 5.22 ⋅⋅−⋅ −+=                           

 
and x is a randomly generated number between –1 to 1.  41 samples of the data have been 
chosen to achieve the average sampling time of 0.05 (average sampling frequency=20Hz).  
The time domain result is shown in Figure 3.1.3 and has been compared to that of the 
original signal. The corresponding spectrum of the signal is given in Figure 3.1.4 along 
with the FFT of an evenly spaced sequence. The orders of the polynomials are chosen to 
be q=31 and p=30. 
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Figure 3.1.3 Time domain interpolation using the Cauchy’s method.  (magnitude only). 
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Figure 3.1.4   FFT of the waveform interpolated by the Cauchy’s method as shown in Figure 3.1.3.  
(magnitude only). 
 
 
3.2 CHINESE REMAINDER THEOREM AND THE CLUSTERING ALGORITHM 

     The Chinese remainder theorem and the clustering algorithm is a different approach as 
compared to the other methods described in this chapter. In this case, one estimates the 
target Doppler frequency from a set of frequencies computed from each PRF by taking the 
conventional FFT of the evenly sampled data. Since we want the maximum Doppler 
frequency of the signal, which exceeds the Nyquist sampling rate, aliasing may occur.  If 
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the desired frequency component is larger than the sampling frequency, then a fold over 
along the sampling frequency will occur.   
    Therefore, the aliased frequency is the residue of the result of the division of the 
original signal frequency by various integers. This is shown in Figure 3.2.1. Here, the 
original frequency of the signal is 65kHz and it is aliased when sampled at a rate of 15kHz 
and is measured at 5kHz.  Figure 3.2.1(b) illustrates the results for the same problem when 
the sampling frequency is 20kHz and the spectrum is still measured at 5kHz.  Figure 
3.2.1-(c) shows the case when the sampling frequency is 25kHz with the measured aliased 
value at 15kHz. This problem can be solved using the following equations 
 
                                                   65 15 51kHz m kHz kHz= × + , 
                                                   65 20 52kHz m kHz kHz= × + ,                                   (3-2-1) 
                                                   65 25 153kHz m kHz kHz= × + .  
 
One can easily see that 1m =4, 2m =3 and 3m =2.  If the information exists only for the 
sampling frequencies and the measured aliased frequencies and the signal frequency is 
unknown, the calculation for the minimum value of the signal frequency is done by 
choosing the minimum multiple of the integers 1m , 2m  and 3m . 
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Figure 3.2.1 Results for Doppler ambiguity 
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The equation still holds for any integer multiples of 1m , 2m  and 3m . In this case, the 
maximum resolvable Doppler frequency would be the Least common multiplier (l.c.m) of 
those sampling frequencies.  This is computed from, 
 
                           f PRF m fo = +1 1 1 , f PRF m fo = +2 2 2 , f PRF m fo = +3 3 3 .            (3-2-2) 
 
where f 0  = target Doppler and m m1 2,  and m3  are integers, or 
  
                    ( )f f PRF0 1 1= mod , ( )f f PRF0 2 2= mod , ( )f f PRF0 3 3= mod ,          (3-2-3)                             
 
where mod is defined through the expression ( ) anbba +=mod  and  n = an integer. The 
problem then becomes one of solving a set of modulus equations, so called simultaneous 
congruences, which should be satisfied at the same time.   
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Figure 3.2.2 Multiple PRF resolves range ambiguity. 

 
     The same procedure can be applied to determine the range as shown in Figure 3.2.2.  
The measured distances for each PRF are denoted by x x1 2,  and x3 .  The real range would 
be 
 
                                    x T n xo = +1 1 1 , x T n xo = +2 2 2 , x T n xo = +3 3 3 .                       (3-2-4) 
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where x0  = target range, and n n1 2,  and n3  are integers, with T PRF1
1

1= , T PRF2
1

2= , 

T PRF3
1

3= .  Equivalently 
 
                               ( )x x T0 1 1= mod , ( )x x T0 2 2= mod , ( )x x T0 3 3= mod .                (3-2-5) 
 
Note that one can measure the time instead of the distance since the distance to the target 
equals 2

tc ⋅ . 

    The most common algorithm to resolve a set of simultaneous congruences like in this 
case is the Chinese remainder theorem.  This is the most common technique used currently 
and much research has been done establishing the credibility of this approach [3-5].  First, 
consider a case of two congruences  
                                                      
                                                               x = b mod(n),                                             (3-2-6-a)                  
                                                                
                                                               x = a mod(m).                                            (3-2-6-b) 
 
From (3-2-6-a), 
                                                                 x b nt= +                                                  (3-2-7) 
 
and from the second equation one observes that t must satisfy the condition 
 
                                                         ( )a mt b n+ = mod                                               (3-2-8) 
or 
                                                         ( )mt b a n= −( ) mod .                                           (3-2-9) 
 
    According to the general rules just derived, the linear congruence in t can only have a 
solution when the greatest common divisor denoted by g.c.d(m, n) can be divided by b-a.  
When this is the case the congruence (3-2-9) may be divided by d  and 
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Let t0  be some particular solution of this congruence and  
 
                                                            x a mt0 0= + , 
 
which is a solution of (3-2-9).  The general solution of (3-2-9) is then 
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⎠
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d
ntt mod0 ,                                             (3-2-11) 

 
so that it can be written as 
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                                                            t t u
n
d

= +0 ,                                                   (3-2-12) 

 
where u is some integer.  The resulting general solution of the original congruence is 
 

                                           
d

mnuxu
d
ntmax +=⎟

⎠
⎞

⎜
⎝
⎛ ++= 00                                   (3-2-13) 

or  
                                                   ( )[ ]nmmclxx ,..mod0= ,                                        (3-2-14) 

since ( )
d

mnnmmcl =,..  is the Least common multiplier for m and n. 

     When one considers a set of algebraic congruences for several modulus and x0  is the 
number satisfying all of them, it is clear that if one adds any multiples of l.c.m of all 
modulus of x0 , the resulting number will also be a solution. Therefore, with several 
possible moduli it is apparent that the number of different solutions is given by the 
incongruent solution corresponding to the l.c.m of the various modulii. 
     When several simultaneous congruences are given 
                
                             ( )x a m= 1 1mod , ( )x a m= 2 2mod , ( )x a m= 3 3mod ,                   (3-2-15) 
 
then the solution can be found by repeated application of the method given above.  One 
combines the first two congruences and finds a single congruence as 
     
                                                  ( )[ ]210 ,..mod mmmclax = ,                                     (3-2-16) 
 
which can replace (3-2-10).  This in turn is solved in conjunction with the third, and so on.  
One sees that if there exists a solution of the congruences (3-2-10), then there is only a 
single solution, with respect to a modulus that is the l.c.m of all the modulus mi . 
     The necessary and sufficient condition for a set of simultaneous congruences has been 
discussed and proved in reference [6].  That is; 
 
                                         ( )( )x a mi i≡ mod  ;     i  = 1, 2, 3, …, r.                             (3-2-17) 
 
Then to have a solution which is valid for any pair, one has 
 
                                                ( )( )jiji mmdcgaa ,..mod≡ .                                     (3-2-18) 
 
This results in a single solution for the modulus 
                                            
                                                  Mr =l.c.m ( )m m mr1 2, , ,L .                                       (3-2-19) 
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For example, x = 7mod(42) and x = 15mod(51) do not have a solution since g.c.d(42,51) = 
3 and 7≠ 15mod(3). 
     According to the above theorem, there is a unique solution to these congruences for a 
modulus that is equal to the product of all the given ones. The first known source of such a 
theorem exists in the Arithmetic of the Chinese writer Sun-Tse and the resulting formula 
is often called the Chinese remainder theorem.  One begins by forming the product 
 
                                                          M m m mr= 1 2L                                                 (3-2-20) 
 
of the relative prime modulus of the set of congruences. When M is divided by m1 , the 
quotient 

                                                             
M
m

m mr
1

2= L                                                 (3-2-21) 

 
is the number divisible by all modulus which are relatively prime to m1 . Similarly the 
number  

                                                      
M
m

m m m m
i

i i r= − +1 1 1L L                                        (3-2-22) 

 
is divisible by all modulus except mi , to which it is relatively prime.  For each i, one can 
solve the linear congruence  
 

                                                          ( )b
M
m

mi
i

i= 1mod .                                           (3-2-23) 

 
The Chinese remainder theorem can be stated as: Let the set of simultaneous congruences 
given for the modulus mi  be relative primes.  Then   
 
                                             ( )ii max mod≡  ; for i =1, 2 , 3, …, r.                           (3-2-24) 
 
For each i one determines bi  through the linear congruence 
 

                                                        ( )i
i

i m
m
Mb mod1≡ ,                                             (3-2-25) 

 
                                                 ( )rr mmmmclM ,,,.. 21 L= .                                     (3-2-26) 
 
The solution of the set of congruences is then 
 

                                      ( )x a b
M
m

a b
M
m

a b
M
m

Mr r
r

≡ + +
⎛
⎝
⎜

⎞
⎠
⎟1 1

1
2 2

2
L mod .                   (3-2-27) 
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The following example corresponds to the three congruences with x=2mod(3),  x = 
3mod(5),  x = 2mod(7).  If  M = 105 and then 
 

                                                    
M
m1

35= , 
M
m2

21= , 
M
m3

15= . 

 
The set of linear congruences will be  
 
                                  ( )3mod135 1 =b , ( )5mod121 2 =b , ( )7mod125 3 =b  
 
and it has the following solution 
 
                                                   b1 2= , b2 1= , b3 1= . 
Therefore  
 
             ( ) ( )105mod151221133523 ⋅⋅+⋅⋅+⋅⋅=x  = 233mod(105) = 23mod(105). 
 
     The Chinese remainder theorem can accurately estimate the Doppler frequency and 
range of a target when used in multiple PRF systems as compared to the other methods.  
In addition to that, other methods like FFT or the matrix pencil method should be used 
before applying the Chinese remainder theorem to estimate the Doppler frequencies for 
each PRF. The problem with the Chinese remainder theorem approach when applied to a 
multiple PRF system is that a small range error on a single PRF can cause a large error in 
the resolved range and there is no indication that this has happened. Trunk and Brockett 
[5] introduced a clustering algorithm to resolve the range and the Doppler in a multiple 
PRF systems.  

 

    Figure 3.2.3 How Doppler ambiguity can be resolved by the clustering algorithm. 
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    To deal with this problem, one should be given a measure of the error at the estimated 
values of the Doppler. As shown in Figure 3.2.3, the Clustering algorithm calculates the 
error, denoted by ( )jC , between the estimates and the average of the estimates of Doppler 
that is the same as the calculation of variance.  At the actual Doppler frequency, the 
variance by the PRFs should be the minimum. Without any noise, the ( )jC should be zero 
at the actual Doppler frequency. The value of ( )jC at the original Doppler will also be the 
same as the variance for the noise in the measurement and the maximum may be obtained 
by the Cramer-Rao bound. The average squared error ( )jC for m consecutive Doppler is 
 

                                                      ( ) ∑
+

+=

−=
mj

ji
oi ff

m
jC

1

21 ,                                         

(3-2-28) 
  
where f   =  the average value of the m ordered Doppler,  
           m  =  number of the PRF, 
          oif    =  tested frequency for i-th PRF and o times the folded one. 
Consider a Doppler frequency of 25.5kHz to illustrate how the algorithm works for the 
multiple PRF systems.  If the three PRFs are 1PRF  = 5kHz, 2PRF  = 6kHz, 3PRF = 7kHz, 
then ( )jC  can be calculated and is shown in Figure 3.2.4.  ( )jC  is minimized at the target 
frequency of 25.5kHz which is equal to the argument  j = 63. 
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Figure 3.2.4. The result of applying the clustering algorithm. 
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3.3 LEAST SQUARES METHOD  

 
     The concept of spectral analysis to nonuniformly sampled data using Least squares was 
first proposed by Vanicek in 1970 [10].  Lomb (1975) developed this method and showed 
that a correlation exists between the height of the spectrum at any two frequencies which 
is equal to the mean height of the spectrum due to a sinusoidal signal of frequencies f1  
and f 2  [11].  These correlations reduce the distortion in the spectrum of a signal affected 
by noise which is an additional benefit to using unevenly spaced data [11].  Further studies 
have been done by Scargle (1982) in which he provided a simple estimate of the 
significance of the height of a peak in the power spectrum through the false alarm 
probability [19].  Feraz-Mello used non-orthogonality of the basis functions when the 
sampling is uneven and then applied the Gram-Schmidt orthogonalization procedure 
which is basically equivalent to a periodogram based method [21].   
     The periodogram approach to the evaluation of the spectrum form a set of 
nonuniformly sampled data provides a scan of a given frequency range. This is obtained 
by fitting sines and cosines functions in a Least squares fashion to the data and plotting the 
correlation of the data for each frequency.  The Least square spectrum provides the best 
measure of the power contributed by the different frequencies to the overall variance of 
the data.  Therefore this can be regarded as the natural extension of the Fourier methods to 
nonuniformly spaced data. The frequency increment can be determined with any precision 
and that is an additional benefit of using this method. Additional advantages can be 
derived from the uneven or random sampling which is absence of aliasing if the sampling 
were to be completely random [9, 13, 15].  It is known that in such situations the spectrum 
would be completely alias free [12].  
     Even though the periodogram analysis has many benefits, it also has some drawbacks.  
For example it cannot evaluate the spectrum for negative frequencies since it is a power 
spectrum of a real sequence. The estimated peak does not precisely correspond to the true 
magnitude of the signal. The error in the peak is mainly from the nonuniform spacing, 
which does not have the same source of error as in the FFT in which the error is primarily 
due to the finiteness of the sequence. A formulation that can resolve both positive and 
negative frequencies without loosing any of the benefits of the periodogram approach has 
been studied in this section. Additional properties of the Least squares approach have been 
investigated in section 3.3.2 to reduce the number of computations in a real time 
operation. 
 
3.3.1 Formulation of the Least Squares Method 
     Let a continuous complex signal ( )tx  be sampled at time instants, ktt = , for k = 0, 1, 2, 
…, N−1. We are interested in looking for a harmonic component of frequencyω , so that 
 
                                ( ) ( )[ ] ( )[ ]τωτω −++−+= tidctibath sin)(cos)(                         (3-3-1) 
 
where a, b, c, d and τ are real constants. The delay parameter τ enables one to select any 
arbitrary location of the origin in the time axis. To estimate a, b, c and d the following 
mean square difference is minimized, 
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                  ( ) ( )[ ] ( )[ ]
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0
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kkk tidctibatxF τωτω               (3-3-2) 

 
with respect to the unknowns. Taking derivative of F with respect to the unknowns a, b, c 
and d will produce the normal equations which are of the form 
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where ( )ktx  is the complex conjugate of ( )ktx .  Since τ is a free parameter, it is selected 
so as to simplify the normal equations; that is, 
 

                                            ( )[ ] ( )[ ] 0sincos
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k tt .                                  (3-3-4) 

 
Solving for τ will yield 
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Similarly for the parameters b, c and d, we enforce 
 

                                                  0===
dd
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dc
dF

db
dF .  

 
Use of (3-3-4) will yield the following equations 
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The resulting values are: 
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Substituting (3-3-10) into (3-3-1) will yield 
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The power in the harmonic component at frequency ω  is given by  
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Equation (3-3-12) is a complex version of the Lomb periodogram [11].  Observe that (3-3-
12) yields the same value for ω  and ω−  since it is squared.  Obviously, this expression is 
not suitable for negative frequencies. To obtain the phase component of the spectrum from 
the power representation (3-3-12), a frequency response ( )ωE  of the following form is 
assumed: 
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where τ  is a free parameter as defined in (3-3-1).  The corresponding power spectrum can 
be written as 
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Matching (3-3-12) and (3-3-14) for all ( )ktx  will give the unknown coefficients α  and β , 
i.e.,  
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Thus,  
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There can be four possibilities of choosing a sign and the problem is how to choose the 
correct one.  The expression for the correct frequency can easily be obtained from the 
analogy of the conventional Fourier transformation or by inserting the following test 
signal ( ) kti

k etx 1ω=  and observing (3-3-16) at the frequency 1ω  and 1ω− .  The resulting 
expression takes positive signs for both the terms, i.e., 
 

                     ( )
( ) ( )[ ]

( )[ ]

( ) ( )[ ]

( )[ ]∑

∑

∑

∑
−

=

−

=

−

=

−

=

−

−
+

−

−
=

1

0

2

1

0

1

0

2

1

0

sin

sin

cos

cos

N

k
k

N

k
kk

N

k
k

N

k
kk

t

ttx
i

t

ttx
E

τω

τω

τω

τω
ω .                (3-3-17) 

 
The phase information can be obtained using this expression. 
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     To illustrate the significance of (3-3-12) and (3-3-17), consider a signal of the form  
 
                                       ( ) ititit

k
kkk eeexf πππ 2425.322 5.22 ⋅⋅−⋅ −+= , 

 
where kt is a random number uniformly distributed between [0, 100] for k = 1, 2, … , 100.  
Observe that this is the same signal as in the section 3.1 except for the average sampling 
frequency is much higher than the previous one.  Now (3-3-12) and (3-3-17) are used to 
estimate the spectrum of the nonuniformly sampled data and the result is shown in Figure 
3.3.1.  Average sampling frequency is 1 Hz which is much lower than the Nyquist 
sampling rate (4 Hz since this is a complex signal). Here, the sampling frequency 
corresponds to the highest vale of the signal and not twice the highest frequency as 
required for the conventional Nyquist sampling theorem to hold. As seen in Figure 
3.3.1(b) the negative frequency component located at –3.5 Hz is now distinguishable 
through the use of Equation (3-3-17).  This is not possible in Figure 3.3.1(a) which is the 
original formulation for the Lomb periodogram.  Note that the absolute value has been 
taken and squared in Figure 3.3.1(b). 
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Figure 3.3.1 Comparison between the Lomb periodogram and the new modified scheme. 

 
3.3.2   Hilbert Transform Relationship 
We can reduce the computation time in the evaluation of the spectrum time by using a 
Hilbert transform relationship between the real and the imaginary parts of (3-3-17), ( )ωE .  
This means that the time domain response of ( )ωE  is causal and this is shown next. The 
Hilbert transformation can be obtained by performing two Fast Fourier transforms and one 
multiplication.  Assume that the number of frequency steps is M, and then the operation 
count for the Hilbert transform will be 2MlogM+M.  The operation count for the 
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evaluation of Equation (3-3-17) is 4(N+1)M where N is the number of time domain data 
samples. By utilizing the Hilbert transform relationship the real part of (3-3-17) can be 
obtained from the imaginary part, and vice versa with reasonable accuracy and the 

processing time will be reduced by a factor of ( )
44

)22(1log2
+

+++
N

NM  approximately.  If 

M and N are large numbers, a maximum of 50% of reduction in the computation time by 
utilizing the Hilbert transformation is obtained.    
     Assume a causal time domain signal ( )tx  which exists on [ ]α,0  where α  is a finite 
number, then 
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Here, the term τ  is ignored since α  is assumed to be a large number compared to the 
period of the signal and it is assumed that ( )tx  is a time invariant sequence. When the time 
step is small, we can replace the summation in (3-3-18) by an integration, i.e., 
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Application of  
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will transform equation (3-3-19) to 
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If we assume 1>>ωα , then ( ) ωαωα 22sin <<  and  
 

                           ( ) ( ) ( ) ( ) ( )∫∫ +≈
αα

ω
α

ω
α

ω
00

sin2cos2 dtttxidtttxE .                    (3-3-21) 

 



 

 

 

31

Since ( )tx  is causal, the real and imaginary part of ( )ωE  will be related by the Hilbert 
transform relationship when 1>>ωα . Figure 3.3.2 compares ( )ω1E  with the Hilbert 
transform of ( )ω2E  where ( ) ( ) ( )ωωω 21 iEEE +=  and ( )ω1E , ( )ω2E  are real.  Figure 
3.3.2(a) corresponds to the case, when ωα  is relatively a large number, and then the two 
results will coincide with each other.  When ωα  is small, Figure 3.3.2(b) shows that 
there are some differences between the two curves where ω  is of a small value.  To 
illustrate the applicability of this method we consider the same signal as in the previous 
example:  
                      
                                ( ) ititit

k
kkk eeexf πππ 2425.322 5.22 ⋅⋅−⋅ −+=  ; α<< kt0    

 
and the Matlab function HILBERT is used to compute the Hilbert transform of ( )ω2E .  
Processing time to obtain the estimator (3-3-17) can be measured by changing the number 
of frequency steps and the number of time domain data samples.  The result is shown in 
Figure 3.3.3.  By utilizing the Hilbert transformation, the processing time has been 
reduced by 46%. 
  

-5 -4 -3 -2 -1 0 1 2 3 4 5
-40

-20

0

20

40
(a) When α  is large (α  = 2)

E1
Hilbert transformed from E2

-5 -4 -3 -2 -1 0 1 2 3 4 5
-40

-20

0

20

40

Frequency [Hz]

(a) When α  is small (α  = 0.5)

E1
Hilbert transformed from E2

 
 

Figure 3.3.2 ( )ω1E  and Hilbert transform of ( )ω2E  for different value of ωα .  If ωα >>1 results 
coincide with each other as shown in (a). 

 
3.3.3  Estimation of the amplitude 
     As seen in Figure 3.3.1, none of the Lomb periodogram methods or the modified ones 
provide the exact amplitude of the signal. The error obviously comes from the uneven 
spacing and the aliasing between the different frequencies. 
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     Since the estimates of the frequencies giving rise to the peaks are not much different 
than the actual ones, we can estimate their amplitudes from these frequencies by using a 
Least square method. If the signal is a sum of exponentials, then 
  

                                                  ( ) klti
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1

; k = 1, 2, ..., N,                            (3-3-22) 

                    
where lω   =   frequencies which give highest peaks, 
       ( )ktx   =   given data with respect to unevenly spaced point kt , 
            L  =   number of frequency components, 
  and    lA  =   unknown magnitudes. 
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Figure 3.3.3 Processing time is reduced by using the Hilbert transform relationship. 

 
 
 
By rewriting (3-3-22) as 
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and using the pseudo inverse, a vector A containing all the amplitudes can be obtained 
from the unevenly sampled points of the signal ( )ktx  corresponding to the estimated 
frequency kω  as, 

                                                           ( ) fBBBA *1* −
=                                              (3-3-24) 
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  and *B  is a conjugate transpose of B. 

 
The same signal as described by the first example has been used to verify (3-3-24) and the 
result is shown in Figure 3.3.4. The three signal components with unit amplitudes can be 
obtained precisely by utilizing (3-3-24) while the amplitudes obtained from using (3-2-17) 
have some differences when compared with the true value. 
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Figure 3.3.4 Result of Equation (3-3-19).  Since the periodogram does not give accurate values of the 

amplitudes, (3-3-19) can be used.  
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3.3.4   Summary 
     Unevenly spaced spectrum using the Least squares method has been studied in this 
chapter. The well-known Lomb periodogram approach has many benefits but it cannot 
discriminate between positive and negative frequencies. Using a modified scheme, 
positive and negative frequencies can be discerned without losing any of the benefits of 
the Lomb periodogram. The method to estimate the magnitude of the signal using the 
periodogram approach has also been described. 
     One of the properties of the periodogram approach is that a Hilbert transform pair 
relates the real and imaginary parts of the coefficients. By utilizing this property, the 
computation time for the spectrum can be reduced by half.  
 
3.4 MULTI-RESOLUTION ANALYSIS 
 
     In an effort to reconstruct a band-limited signal from an unevenly sampled signal using 
multirate filter banks, a multi-resolution approach has been taken by Vaidyanathan [25, 26 
and 27].  It is possible to reconstruct a band-limited sequence from a data sequence 
followed by decimation.   
     Since the spacing of the multiple PRF is not uniform and is not totally random, it can 
be characterized by an unevenly decimated version of the signal.  In that case, one can 
utilize quadrature mirror filters (QMF) to get the original signal. Two preliminary 
conditions should be satisfied when using this approach to reconstruct a signal from an 
unevenly sampled data.  First, the signal should be band-limited.  In real life, there cannot 
be a band-limited sequence since our sample length in time is finite. If numerous data 
points are obtained or the signal spectrum is concentrated in a certain region, then one can 
consider the signal to be approximately band-limited for all practical purposes. Second, 
the sampling frequency cannot be totally random but it should have a common interval so 
that each sample in the multiple PRF signal is an integer multiple of the common interval.  
Since multiple PRF system satisfies the second condition, the main contribution to the 
error would be the finiteness of the data samples and the accuracy in the design of the 
filters. 
     This method illustrates the correlation between sampling rate and the bandwidth. If the 
bandwidth becomes large, the number of samples should increase within a given period of 
the signal so as not to loose any information. Conversely, if the number of data samples 
becomes small, like missing data or due to decimation of the data, the bandwidth should 
decrease proportionally. In an ideal case, the QMF analysis can recover the unknown 
samples in between the missing data exactly. A two PRF case has been presented in this 
section and this can be extended to the multiple PRF case.        
 
3.4.1 Two PRFs Case (20kHz and 30kHz)  
     It is known that if a sequence is band-limited and the average sampling rate satisfies 
the Nyquist sampling criterion, then the sequence can fully be recovered regardless of the 
sampling rate whether it be uniform or not.   Assume that we have M uniform samples in a 
period, then the maximum angular frequency content of the signal would be πω ≤ .  If 
we have a decimated  sequence which  has N randomly  chosen samples out of  M uniform 
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samples, then the bandwidth of the sequence should be reduced to ω π≤
N
M

 for a 

complete recovery of the signal without aliasing. 
     Figure 3.4.1 provides an example of the data sampled by two PRFs, 20kHz and 30kHz. 
Since the greatest common divisor of those two frequencies are 60kHz, the sequence is 
repeated every 6 intervals (every 4th sample). We want to recover the missing 2 samples 

occurring at time step 1 and 5 out of 6 samples from a band limited sequence of πω
6
4

≤ .  

Perfect reconstruction can be achieved by a QMF system shown in Figure 3.4.2  if we can 
derive a set of filter banks which can carry out a perfect reconstruction of ( )X z . Hence, 
the missing samples can be recovered. The intermediate step labeled iU s in Figure 3.4.2 is 

the unevenly sampled sequence.  One can estimate the output ( )zX̂  using Equations (3-4-
1) and (3-4-2).  The output z transformation of the M-fold decimator (up sampler) ( )Y z  is 
[25]: 
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Figure 3.4.1 Data generated by sampling a signal using 2 PRFs (20kHz and 30kHz). 
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Figure 3.4.2. Block diagram for the reconstruction of the band-limited signal when sampled by the 2 PRFs 
(20kHz and 30kHz). 
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The output Z transform of the L-fold expander (down sampler) Y(z) is given by [25]: 
 

                                                           ( ) ( )Y z X z L= .                                                   (3-4-2) 
 

We define 3
2 ππ j

M
j

eeW −−
==  and the iU  in the Figure 3.4.2 would be obtained using 

equation (3-4-1), as 
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By using (3-4-2), the Vs are given by 
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The output ( )zX̂  will be the sum of all the iV ’s and this should be a purely delayed 
version of the original sequence if it were to be a perfect reconstruction of our signal.  
Thus, 
 
( ) ( ) ( ) ( ) ( )zVzVzVzVzX 4321

ˆ +++=  
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where k is any constant.  The aliased terms, ( )X zW , ( )X zW 2 , ( )X zW 3 , ( )X zW 4  and 

( )X zW 5 , should be zero for perfect reconstruction and the output signal term should be a 
delayed version of the original signal.  Matching term by term in each of the two 
expressions will yield 
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We have 4 unknowns, 321 ,, HHH  and 4H , and 6 equations which cannot be solved 

simultaneously in general. In our case, the shifted terms ( )X zW , ( )X zW 2 , ( )X zW 3 , 

( )X zW 4  and ( )X zW 5  exist only in limited regions in the frequency domain and we can 
make those equations satisfy the constraints in each region. Figure 3.4.3 shows the shifted 
versions of the sequence ( )X z .  In region 1 of Figure 3.4.3, Equation (3-4-6-a), (3-4-6-b), 
(3-4-6-c) and (3-4-6-d) need to be satisfied since ( )X zW 4  and ( )X zW 5  are zeros and it 
satisfies all 6 equations in region 1.  Solving the equations will give the filter 
characteristics in region 1.  The filters, 1H , 2

2 Hz − , 3
3Hz −  and 4

4 Hz − , should be constant 
numbers for each frequency region since W is a constant.  In region 2, Equation (3-4-6-a), 
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(3-4-6-b), (3-4-6-c) and (3-4-6-f) need to be satisfied since ( )X zW 3  and ( )X zW 4  are 
zero and it satisfies all the six equations.  Solving the equations will give the filters 
characteristics in the region 2.  In region 3, Equation (3-4-6-a), (3-4-6-b), (3-4-6-e) and (3-
4-6-f) need to be satisfied. ( )X zW 2  and ( )X zW 3  is zero which makes it possible to 
satisfy all the six equations, simultaneously.  Solving the equations will give the filter 
characteristics in the region 3.  In region 4, Equation (3-4-6-a), (3-4-6-d), (3-4-6-e) and (3-
4-6-f) need to be satisfied since ( )X zW  and ( )X zW 2  are zero and this satisfies all the 6 
equations.  Solving all these equations will give the filter characteristics in the region 4. 
     Once the filter coefficients for each region are calculated, they should be combined to 
make a set of filters.  Note that each filter from the equation yields 1H , 2

2 Hz − , 3
3Hz −  

and 4
4 Hz −  and the delay should be taken out from them when realizing the filters. The 

results of those filters are shown in Figure 3.4.4. 
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Figure 3.4.3 Spectrum of a sampled signal and its shifted versions. 
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Figure 3.4.4  Filters to generate a perfect reconstruction of the signal for the system of Figure 3.4.2. 

 
 
     A numerical example outlined in Figure 3.4.2 utilizing the system of filters as 
described in Figure 3.4.4 is used to illustrate how this method performs.  The original 
signal is described by 
 
                   ( ) ixixix

k
kkk eeexf πππ 2425.322 5.22 ⋅⋅−⋅ −+= ; for k = 1, 2, …, 168.                   (3-4-7) 

 
The signal is sampled at 5.5556Hz and 8.3333Hz (equivalent sampling at 20kHz and 
30kHz with time scaling) simultaneously as shown in Figure 3.4.1 and it is equivalent to 
sampling the signal at 16.6667 (60kHz) and then unevenly decimating it.  Note that the 
maximum frequency in the signal is 4Hz which is less than half the equivalent sampling 
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frequency 5.5556Hz (= ⋅MN 16.6667/2). The frequency domain result is given in Figure 
3.4.5.  Observe that the original signal is not strictly band-limited due to the finite number 
of data samples but the transformed one is band-limited.  Figure 3.4.6 produces the 
resulting time domain sequence. 
 
3.4.2 Multiple PRF Case 
     The same procedure as described for the 2 PRF case can be applied to the multiple PRF 
case.  Define M as the total number of time steps in one period where decimation 
repeatedly occurs.  If the PRFs are relatively prime numbers of each other, the time step M 
will be given by the least common multiplier (l.c.m) of the PRFs. For example, the 
sampled data for the 3 PRFs 3Hz, 4Hz and 5Hz which are relatively prime numbers is 
repeated every 60 time steps as illustrated in Figure 3.4.7. If the PRFs are not relative 
prime numbers, then M should be divided by the greatest common divisor (g.c.d) of the 
PRFs. Sampling the data by PRFs of 3Hz, 4Hz and 5Hz is same as sampling the data at 
30kHz, 40kHz and 50kHz except that the scale factor and M can be recalculated by 
dividing the PRFs with their g.c.d, i.e., 
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Figure 3.4.5   Spectrum (magnitude) for the data of Figure 3.4.2 when using the QMF filters as shown in 

Figure 3.4.4. 
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Figure 3.4.6  Time domain data for the example of  Figure 3.4.2 when using the QMF filters as shown in 
Figure 3.4.4. 
 
 
     The number of known samples in one period adds up to the PRFs reduced by 1 if they 
are relative prime numbers. If they are not relative prime numbers, it can simply be 
divided by their g.c.d. as before. Define N as the number of known samples in the M time 
intervals, where 
 

                                           ( ) 1
,.. 21

−=
∑

LPRFPRFdcg

PRF
N i

i

.                                          (3-4-8) 

 
For the 30kHz, 40kHz and 50kHz case we will have 11 known samples in one period. We 
have 49 (= 60 − 11) unknown samples in one period in this case (represented by the dots 
in Figure 3.4.7). The ratio of the number of unknown samples to the known samples 
determines the maximum bandwidth of the signal with respect to the Nyquist rate. The 
real data sampled by the exact Nyquist frequency or at a higher frequency can have a 
maximum bandwidth of 2 times the Nyquist frequency for an exact reconstruction. A 
more sparsely sampled data than the Nyquist rate should have less bandwidth for an exact 
reconstruction.  The maximum bandwidth allowed for the signal would be   
 

                                                            
M
Nπω ≤ .                                                      (3-4-9) 

 
Obviously, the bandwidth if sampled by the Nyquist rate is ω π≤ .      
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Figure 3.4.7 Sampled data generated by the three PRFs. 
 
 

 Even though the signal is band-limited by Equation (3-4-9), the effective sampling 
frequency increases to the l.c.m of those three PRFs of 3, 4 and 5Hz which is 60Hz.  The 
actual maximum resolvable Doppler frequency also increases. 
 
     The number of filters that should be designed is the same as the number of known 
samples (N) as in the Figure 3.4.2.  The spectra should be divided into M regions to 

calculate each of the filter coefficients. The bandwidth for each region will be 
2π
M

(for the 

20kHz and 30kHz case it is 
2
6
π

) and this can be a limitation for realizing a filter when M 

is a large number with a finite number of sampling points. For the 3 PRF case, 30kHz, 
40kHz and 50kHz, the total number of filters in Figure 3.4.2 will be 11 and the maximum 

bandwidth of the signal would be ω π≤
11
60

 when the sampling rate is 600kHz (= l.c.m of 

30kHz, 40kHz and 50kHz).  This is equivalent to sampling the data at 110kHz (= 
600×11/60) since there is both a reduction of the bandwidth and an increase of the 
sampling frequency.  That is, the maximum resolvable Doppler frequency is increased by 
2.75 (=110/40) times over the single PRF case of 40kHz.  In this case the maximum 
resolvable range increases by 4 (=40/10) times that of the single PRF system of 40kHz.  

The bandwidth of each region for the QMF is 
60
22 ππ

=
M

. 

 
3.4.3   Optimum Value of M and N in Radar Application 
     This method has two practical limitations as indicated earlier which causes errors in the 
estimation.  First, assume that the signal is a band limited sequence.  In a real situation 
obtaining a band limited sequence through a finite number of samples is not possible. In 
radar applications, typically the maximum number of samples does not exceed a few 
hundred points. In which case, our reconstruction of spatial domain data will have inherent 
errors.  This is shown in the previous example of Figure 3.4.5. The other limitation is the 
bandwidth of each region. Each of the filters to be implemented in each of the region has 
an M band filter characteristic [25] and the bandwidth becomes too small if M becomes 
large.  For the 3 PRF case of 30kHz, 40kHz and 50kHz, we need a filter which has a 

bandwidth of 
60
22 ππ

=
M

.  This type of filter is difficult to implement since there are only a 

few hundred sample points.  
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     The range increment by using a multiple PRF system is proportional to 1/PRF and it is 
given by 

                                                  ( )L21

2

,.. PRFPRFdcg
PRFIR = ,                                      (3-4-10) 

 
where IR is the increase of the scale factor in terms of the range and 2PRF  is the PRF used 
for comparison with that of a single PRF system. 
    The maximum resolvable range for the 30kHz, 40kHz and 50kHz PRF cases will be 4 
(= 40/10) times that of the single PRF case corresponding to 40kHz. 
     The increase in the range of the Doppler by using a multiple PRF system can be seen 
from the following equation  
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where  ID  is the increase in the range of the Doppler, Bandwidth is the ratio of the 
maximum signal bandwidth divided by two times the Nyquist rate and f s  is the 
equivalent sampling frequency of the multiple PRF system. The maximum resolvable 
Doppler for the 30kHz, 40kHz and 50kHz PRF case is 11/4 times that of the one PRF case 
of 40kHz. 
     Since there is a trade-off between maximum Doppler and maximum range [1, 2], we 
want to maximize the incremental product of the of Doppler and the range, that is, 
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                = N .                                                                                                           (3-4-12) 
 
We can maximize N with respect to M.  From this result one can choose N = M−1 since N 
should always be less than M. For the case of M = 16 and N = 15, the results are shown in 
Figure 3.4.8 and 3.4.9 when applied to the same signal as in the previous example (3-4-7).  
Note that Equation (3-4-10) is true for the general multiple PRF system and Equation (3-
4-11) is applicable only when using the QMF filters. Therefore the result of (3-4-12) may 
be different if other reconstruction techniques are used. 
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Figure 3.4.8  Frequency domain response for the optimized case (M = 16,  N = 15). 
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Figure 3.4.9 Result for the example (magnitude) in the time domain (M=16 and N=15). 
 
 

3.5 Iterative Method 
 
     The application of iterative methods based on the Sandberg’s theorem [20] was first 
used for evaluating the spectrum of a nonuniformly sampled data by Willy [29]. Willy 
used pulses of finite width and conjectured that the interactive recovery procedure will 
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converge for the finite width sampling. Marvasti [30] tried to prove that the iterative 
method converges for random samples when the samples are chosen from a uniform or a 
Poisson distribution. Sandberg proved the convergence of this method [31].   
     It is shown that if the signal is band-limited and the average sampling rate satisfies the 
Nyquist sampling rate, then the signal can be recovered [12, 13] without aliasing. The 
method uses an iterative procedure that requires low pass filtering of the unequally spaced 
samples followed by resampling at the same points. Again, low pass filtering is applied to 
the signal to obtain a corrected signal. Repeated application of this process is shown to 
converge to the original signal. The proof of convergence is given in Appendix C. By its 
nature, the iterative method is more time consuming than the other methods since it 
requires a large number of iterations.  Even though the convergence is guaranteed by this 
method, the number of iterations can be very large to reach a certain error criteria.  Some 
effort has been done by Park [24] to increase the rate of convergence by minimizing the 
energy term, but in their approach one needs to know the values for the error terms that is 
usually not known. Usually a smaller spacing between samples provides a faster 
convergence of the sequence. 
     Starting with the Sandberg theorem, “On the properties of some systems that distort 
signals“ [31] Sandberg extended Beurling’s theory of recovery of distorted band-limited 
signals in a Hilbert space.  He showed that signal recovery can be extended to the case in 
which a known square integrable noise is added to the input signal and the result applied 
to a time varying device which may be non-linear.   
     Sandberg’s theorem can be stated as: Let P and Q be the mapping of κ into H (Hilbert 
space) such that for all f g, ∈κ   
 
                                              ( ) 2

1,Re gfkgfQgQf −≥−− ,                                  (3-5-1)    
    
                                                  PQf PGg k f g− ≤ −

2
2

2
,                                     (3-5-2) 

 
where k1 and k2 are positive constants.  Then for each h ∈ κ, the equation h PQf=  
possesses a unique solution  
 
                                                               ( )PQ h

−
∈

1
κ ,                                             (3-5-3) 

given by 
                                                                ( )PQ h f

n n
−

→∞
=

1
lim ,                                        (3-5-4) 

where   

                                                        ( )f
k
k

h PQf fn n n+ = − +1
1

2
,                                   (3-5-5) 

 
and f 0  is an arbitrary element of κ.  Furthermore, for all h h1 2, ∈ κ 
                                                

                                               ( ) ( ) 21
1

2
1

1
1 1 hh

k
hPQhPQ −≤− −− .                     (3-5-6) 
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The proof is given in Appendix C.  The uniqueness of the solution for h PQz= is also 
given in Appendix D. 
     Applying theorem (3-5-6) to the unequally spaced signal, and letting 
        P  = band-limiting operator (Low pass filter),    
        Q  = ideal nonuniform sampling operator the same as in the given nonuniformly 
spaced samples, 
will transform the expressions in (3-5-4) and (3-5-6) as 
 
                                                                 ( ) ( )lim

k kx t x t
→∞

= ,                                          (3-5-7) 

                                    
                                                ( ) ( ) ( ) ( )x t PQx t P PQ x tk k+ = + −1 λ λ ,                          (3-5-8) 
 
where ( )x t  is the band-limited signal and λ is a constant. The constraint between the 
coefficient λ  and data spacing ti  are given in Appendix F and is given by 
                                      

                                                                     0
2 1

2
< <λ

k
k

,                                           (3-5-9) 

                                                                        2
2

1 kk ≤ .                                             (3-5-10) 
 
This iterative method will converge provided if  
                              
                              ( ) ( ) ( ) ( )txtxtxtx kkkk 11 −+ −≤−      for all k.               (3-5-11) 
We have 

         
( ) ( )( ) ( ) ( )( ) ( ) ( )txtxrtxtxPQtxtxP kkkkkk 111 −−− −≤−λ−−   for 0 1≤ <r .     (3-5-12) 

 
The proof of (3-5-12) is given in Appendix E.  Note that to minimize r and maximize the 

rate of convergence, it is required that λ =
k
k

1

2
.  The main problem in choosing a proper λ  

is that it cannot be determined theoretically since k1  and k2  are not known. λ  is generally 
chosen between 0.5 and 1.   
     Initial values of the analog signal )(tx  can be set to ( )ktx  with sample and hold, which 
would be a good approximation for an arbitrary initial value. To simulate the band-limited 
operator Q  using the nonuniformly spaced data, the FFT has been used using the 
nonuniformly spaced data, which may not yield an exact frequency response but an 
approximation to it.  The cut off frequency with zero padding has been set to 0.6π  (π  
provides an all-pass filter) since the average spacing for our example does not exceed one 
half of the Nyquist sampling interval. Finally the inverse FFT is used to get the band-
limited signal. Here, P  is the sampling operator which converts the analog signal to the 
nonuniformly sampled signal.  To simulate P, the Lagrange polynomial interpolation has 
been used to represent the function and is evaluated at the nonuniform sampling points.   
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     One constraint of the iterative method is the sampling points tk  cannot exceed the 
range of the k-th interval to guarantee convergence [31], that is 
 

 2
k

kk
TTt ∆≤− ,                                         (3-5-13) 

 
where kT  is the location of the sample points using an average interval, and ∆Tk  is the 
deviation associated with the  k-th interval from the uniform average spacing.  
     For example, consider the signal of (3-4-7) which is given by 
 
                        ( ) ititit

k
kkk eeetx πππ 2425.322 5.22 ⋅⋅−⋅ −+= ;   for  k = 1, 2, …, 100,           

 
where kt  is the time step satisfying (3-5-13).  Let the deviations from the uniform spacing 

represent a set of uniformly distributed random numbers bounded by [- 2
T , 2

T ] for k = 

1, 2, ..., 100 and T = 0.03. The ratio of the average sampling rate to the Nyquist sampling 
rate is 4

33.33 .  Using (3-5-8) iteratively, the time domain sequence and the 

corresponding spectrum can be obtained as shown in Figure 3.5.1.  A typical plot of the 
iteration number as a function of the error is given in Figure 3.5.2. Theoretically this 
method has been shown to converge but the error does not go to zero for the real case.  
Here, the error is defined as the normalized difference in the time domain data. 
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Figure 3.5.1 Result of the iterative method 
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Figure 3.5.2 Reduction of error with iteration. 
 
 

3.6  Orthogonal Polynomial Expansions 
 
     In this approach the unevenly spaced data is approximated by a set of orthogonal 
polynomials. Then since the Fourier transform of the orthogonal polynomials are known 
analytically one can obtain the spectrum of the unequally spaced data. In this section the 
Associated Hermite functions and the Spherical Bessel functions have been utilized to 
recover the unevenly spaced signal [32, 33]. The Fourier transforms of the Associated 
Hermite functions and the Spherical Bessel functions are the Associated Hermite functions 
and the Legendre polynomials, respectively.    
     The benefit of using orthogonal functions is that they are easy to generate by using 
their recursive properties. But this method also depends on the spacing between samples.  
Moreover there is no measure of error as to how well it fits the original signal. Even 
though the fit looks good in the spatial domain, there is no guarantee that it has better 
estimation properties in the frequency domain. It is easily seen that the average spacing 
should be much less than the Nyquist sampling rate since the Nyquist rate allows only two 
samples (or more) per one period (for the case of a real signal).  Next, the formulation in 
terms of orthogonal polynomials is presented. 
 
3.6.1  Approximation of unevenly spaced data by the Associate Hermite Polynomials 
     The associate Hermite functions ( hn ) and the Hermite functions ( Hn ) are related by 
[14] 
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where l  is a scaling factor and n is the degree of the polynomial. The Hermite 
polynomials can be computed recursively through 
 
                                                            ( )H t0 1= , 
                                                            ( )H t t1 2= ,                                                       (3-6-2) 

( ) ( ) ( )H t tH t n H tn n n= − −− −2 2 11 2( )  ; n ≥ 2 . 
 
Using (3-6-1) and (3-6-2), the associated Hermite functions can be calculated easily 
through the recursive relationship 
 

                             ( ) ( ) ( )( )xhnxhx
n

xh nnn 21 121
−− −−=  ; n ≥ 2 .                        (3-6-3) 

 
Some of the lower degrees of the associate Hermite polynomials are shown Figure 3.6.1.            
      Any signal can be expanded by the associate Hermite functions through 
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lh x ln
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Figure 3.6.1 A plot of the associate Hermite functions of different degrees. 

 
 
Using the following Equations [14], 
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a Fourier transform relationship by combining Equations (3-6-1) and (3-6-5) is established 
as [33] 
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or equivalently the Fourier Transform pair is  
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where 
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1
ll π=  is a scale factor. Thus, if we can expand the function ( )f x j by an 

orthogonal polynomial hn , then the Fourier transform of ( )f x j can be expressed by 

adding up the terms ( )− ⎛
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 with the same coefficients. The coefficients 

an can be calculated from the matrix representation 
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where M  is the number of data points. N is the maximum degree of the associated 
Hermite functions and hn  is the associated Hermite polynomial of degree n. Finally, 

( )f x j  is the sampled value of the data at x j  for  j = 1, 2, …, M. The degree of the 
Hermite polynomial, N, can be set up to a maximum value which is identical to the 
number of data samples M. Here, x j  is not limited to evenly spaced samples only but also 
covers unevenly spaced samples. The average sampling rate needs to be less than the 
maximum signal frequency so that it can approximate  f(x)  in a smooth fashion.   
     As an example, consider the signal in (3-4-7) 
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                       ( ) ititit
k

kkk eeetf πππ 2425.322 5.22 ⋅⋅−⋅ −+= ; for k = 1, 2, …, 100, 
            
where kt  follows a uniformly distributed random number in the range [−1, 1].  The 
average sampling rate is 50 Hz and the scale factor, 1l , has been chosen to be 0.2. na ’s 
have been obtained using (3-6-8) and the corresponding spectrum can be estimated 
through (3-6-6).  Figure 3.6.2-(a) is the time domain signal and the interpolated function. 
Figure 3.6.2-(b) is the corresponding frequency domain response using the associated 
Hermite functions, and the three frequency components can be clearly observed in the 
analyzed data.  
 
3.6.2 Approximation by the Legendre Polynomial  
     The Legendre polynomials are also orthogonal polynomials and their Fourier 
transforms are analytically known, which are the spherical Bessel functions. The Legendre 
polynomials exist only in the region −1 to 1. A complex function of finite support can be 
expanded in terms of these polynomials, as the time domain sequence is finite.  The band-
limited Legendre functions can be scaled to any arbitrary range for practical use.  The 
relationship between the spherical Bessel functions and the orthogonal Legendre 
polynomials is given [14]:  
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Figure 3.6.2 Fitting of the data by the associate Hermite functions. 
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Spherical Bessel functions can be written in terms of the ordinary Bessel functions as: 
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Substituting (3-6-10) into (3-6-9) will yield  
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Using the Fourier transform property,  
                           

                           ( ) ( ) ( )P x i j e dn

n

n
i x= − −

−∞

∞ −∫ 2 ω ωω  ; − ≤ ≤1 1x                              (3-6-12) 

 
and by using a scale factor a, one obtains  
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Different orders of ( )P xn  and ( )2 − i ( )
n

nj −ω  are shown in Figures 3.6.3(a) and (b). For 
example, the rectangular function which corresponds to a Legendre function with n=0 
whose Fourier transform corresponds to a spherical Bessel function of zero degree which 
is the sinc function as shown in Figure 3.6.3(b). Therefore, if we can expand the function 
f(x) by using the orthogonal Legendre polynomials nP , then the Fourier transform of f(x) 
can be expressed by adding up the spherical Bessel functions with the same orders. Or, if a 
signal can be expanded by the spherical Bessel functions then the Fourier transform can be 
evaluated using the corresponding sum of Legendre polynomials.   
      A signal, for example, can be written in terms of an infinite sum of Legendre functions 
as 
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Multiplying both sides by ( )P xm j  and integrating from −∞  to ∞  will give 
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Figure 3.6.3 (a) Legendre functions of different degrees and (b) The plot of ( )2 − i ( )
n

nj −ω  for  different 
degrees  

 
 

The right hand side will be zero except for m  = n since ( )P xm j ’s are orthogonal to each 
other and the left hand side of the integral will then be a summation.   
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Therefore the coefficients An  are given by 
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. N is the number of data and Pn   is the Legendre polynomial of 

degree n.  Then, 
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Note that the Bessel functions are defined only along the positive axis. 
     Since the transform is limited from −1 to 1 (or −a to a through scaling), the frequency 
response would consist of sinc functions which will produce undesired aliasing between 
the various frequency components. To obtain a better estimate of the amplitude, the same 
technique as in the previous section can be used.      
     As an example, consider a signal as defined by (3-4-7) 
 
                    ( ) ititit

k
kkk eeetf πππ 2425.322 5.22 ⋅⋅−⋅ −+= ;  for  k = 1, 2, …, 100,            

 
where kt  is generated for a uniformly distributed random number in the range of [−1; 1]. 
The average sampling rate is 50Hz. nA ’s have been obtained using (3-6-17) and the 
corresponding spectrum can be estimated from (3-6-18).  Figure 3.6.4(a) is a plot of the 
time domain signal and the reconstructed signal.  Figure 3.6.4(b) is the corresponding 
frequency domain response using the spherical Bessel functions.  Note that the spherical 
Bessel functions only exist for the positive argument and thus the negative frequency in 
the signal, 3.5 Hz, cannot be represented in the Figure 3.6.4(b).  
 
 
3.7   Estimation in terms of the Analog Frequency 

     One of the techniques of performing a perfect reconstruction of a band-limited signal 
from its unevenly sampled data points has been proposed by Jenq [34, 35, 36].  This 
method shows that if the average sampling rate is greater than the half of the maximum 
frequency component of the signal, then the signal can be perfectly reconstructed. While 
the Lomb periodogram is not affected very much by the sampling rate since it estimates 
the amplitude and phase by a Least squares technique, Jenq’s and the QMF methods 
produce perfect reconstruction from a theoretical point of view if the average sampling 
rate satisfies the Nyquist rate.  In comparison to the QMF method, Jenq’s method does not 
need to use a set of filter banks which can cause some errors.  Here the spacing between 
the data samples cannot be random.  That is the deviation from a uniformly sampled data, 
denoted by mr , should be limited in magnitude as in the case of the QMF method. The 
nonuniform sampling rate can be expressed as 
 
                                                           nn nTt ∆+= ,                                                    (3-7-1)    
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where T is the period of the uniformly sampled signal. n∆ is the periodic sequence with a 
period M. Let n = kM + m, where k ranges from –∞  to +∞  and m ranges from 0 to 
(M−1), then 
 
                                                     mn TmkMt ∆++= )(                                                      
                                                         TrmTkMT m++= ,                                             (3-7-2)    
 

where Tr m
m

∆=  is the timing offset expressed in percentage in terms of the nominal 

sampling period T.  The digital spectrum for the nonuniform samples is given by 
 

                                                     ( ) ( )∑
∞

−∞=

−=
k

tj
nd

netxX ωω .                                        (3-7-3) 

 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-6

-4

-2

0

2

4

6
(a) Time sequence

Time

Original sequence     
Reconstructed sequence

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6
(b) Estimated spectrum

Frequency [Hz]

 
Figure 3.6.4 Example using the Legendre polynomial 

 
 
Utilizing (3-7-2) will yield 
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and the following discrete sequence can be obtained by using the sum of delta functions as 
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By changing the order of integration and summation, one obtains 
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Finally,  
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(3-7-8) shows the relationship between the discrete spectrum and the analog spectrum.  If 
we consider the angular frequency between zero to 2π  then  
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To find the analog spectrum aX , one can change the variable k from 0 to M−1.  That is, 
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or equivalently 
 
                                                   ( )[ ] [ ] ( )[ ]ωω ad XYX = ,                                           (3-7-12) 
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By taking the inverse of the M by M matrix Y and multiplying it by dX  one can get the 
analog frequencies aX .  
     To illustrate the applicability for the multiple PRF system, we take the signal of (3-1-

2), i.e., 

                          ( ) ixixix
k

kkk eeexf πππ 2425.322 5.22 ⋅⋅−⋅ −+= ;  for  k = 1, 2, …, 128. 

The signal is sampled at two different frequencies simultaneously. The two sampling 
frequencies are 1PRF =6.25Hz, 2PRF =9.375Hz.  This is equivalent to sampling by 2Hz 
and 3Hz except for the scaling in frequency. 1PRF  has 2 samples in a record of 
0.32seconds, 2PRF  has 3 samples in 0.32seconds and this repeats every 0.32 seconds. 
This will occur every 0.32seconds and the total number of samples, M, is obtained by 
adding up the samples for all the PRFs.  Since the last sample in the record of 0.32 
seconds is also the starting sample for the next time interval, M will be given by M = 
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1PRF  + 2PRF  − 1, if the PRFs are relative prime numbers. The matrix Y can be computed 
from (3-7-9) and (3-7-13) and is used to obtain ( )ωdX . The result of this approach is 
compared to that of the DFT of the evenly spaced data as shown in Figure 3.7.1 and 3.7.2.  
Figure 3.7.3 is the DFT of the unevenly spaced signal.  It is seen that the weak signal 
cannot be distinguished in Figure 3.7.3 but can be discerned quite easily in Figure 3.7.2. 
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Figure 3.7.1  DFT of the uniformly spaced signal. 
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Figure 3.7.2   Spectrum of the nonuniformly sampled signal after processing 
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Figure 3.7.3  DFT of the nonuniformly spaced data.   
 

 
3.8   Comparison of the Various Methods 

 
     The performance of all the methods described so far is now compared with each other 
in this section. Since for every method presented, there is a problem of some sort 
associated with each technique, it is difficult to compare the results from all the 
approaches directly. Usually, the polynomial type methods as described in section 3.1 and 
section 3.6 do not depend much on the number of data samples. Rather they fit the data 
well with a less number of points because the degree of the polynomial becomes large and 
the error associated with the approximation of the data may become great due to 
numerical instabilities. The other methods perform better as the number of data samples 
increases. The QMF method (section 3.4) needs more than a few hundred data points to 
result in a meaningful estimation. The use of orthogonal polynomials and the iterative 
method need to have a small sampling interval while the Least squares approach (of 
section 3.3) is not much affected by the average sampling rate. We divide all the examples 
into three parts. We consider the following three cases, (1) in this case, the sampling 
frequency is much greater than the highest frequency of the signal, (2) the sampling 
frequency is equal to the highest frequency of the signal and finally, (3) the sampling 
frequency is much lower than the highest frequency of the signal in which case aliasing 
may occur. Note that the sampling frequency defined in this context to recover the original 
complex signal is equal to the maximum frequency of the signal. It is not related to the 
conventional Nyquist sampling frequency. For each case, the results computed by the 
various methods are compared. To illustrate the accuracy and the stability of the 
techniques, ground clutter has been added in addition to white Gaussian noise and the final 
result is compared with that from the conventional CR theorem. For all the examples, we 
considered a 2 PRF system using 7Hz and 8Hz as the two sampling frequencies. The 
average sampling frequency is 14Hz since it has 14 samples within one time step. 
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According to (2-10), the maximum resolvable Doppler frequency is increased to 8 times 
as compared to the case of a single PRF system of 7Hz. The number of sampling points 
used by each method is also presented. 
 
3.8.1    Case 1: maxs ff >  
     As mentioned in the previous sections, the polynomial interpolation method, iterative 
method and orthogonal expansion method yield better estimation for the spectrum when 
the sampling frequency becomes much higher than the Nyquist frequency. These 
approaches usually provide a meaningful result when the average sampling rate is at least 
4 times that of the maximum frequency of the signal.  In the numerical example, the 
sampling frequency has been chosen to be 4 times that of the maximum signal frequency.  
For the first example, we examine a single frequency signal of magnitude 10. 
 
Example 1: Single frequency max4 ffs =  
The average sampling rate is 14Hz and the signal frequency is 3.5Hz. The non-uniformly 
spaced samples repeat every 14th sample and a total of 100 sampling points are taken so 
that 
 
           ( ) kxi

k exf 5.3210 ⋅= π    with   k = 1, 2, …, N.    N =  number of samples = 100. 
 
The nonuniformly sampled time domain signal and the DFT of the original signal are 
shown in Figure 3.8.1(a) and (b).  The frequency response has a peak at the signal 
frequency component, which is the 25th cell out of 100 cells.  All the eight methods have 
been simulated and the results are given in Table 3.8.1. The error in the time domain has 
been computed by using the normalized average of the differences. The estimate of the 
signal is ( )kxf̂  and the error in the approximation of the function is defined by  
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The estimate of the error in the frequency domain is given in Table 3.8.1. It is computed 
by taking the differences between the maximum of the computed frequency response and 
the signal frequency indicated in the last column of Table 8.3.1 and is expressed by 
 

                                                      
f

ffError
ˆ

2 −
= ,                                                  (3-8-2) 

 
where f is the target frequency and f̂  is the estimated frequency. f̂  is the frequency at 
which the maximum value of the frequency response is obtained. 
      Note that the frequency domain error term is the difference between the computed 
spectrum of the time domain data and the actual frequency response.  For the method 
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based on the CR theorem, we took 53 and 48 sample points for each sampling frequency.  
Observe that the peaks in the spectrum occurred at the 23rd and 24th cell since the sampling 
frequency of 8Hz and 7Hz will yield the cell number 23 ( 8/535.3 ⋅≈ ) and 24 
( 7/485.3 ⋅≈ ) for a target frequency of 3.5.  Even though the time domain estimation is 
not very good, acceptable estimates for the target Doppler can be obtained for all the 
methods. In this example, all the methods provided acceptable estimates for the spectrum.   
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Figure 3.8.1 Sample signal for Example 1 

 
 

Table 3.8.1 Summary of the results for Example 1.  max4 ff s =  with single frequency. 
 

Methods 
Error1 

(time domain) 
Error2 

(frequency domain) 
Number 
of data 

Target cell 
number 

Lagrange polynomial 0.3077 0.0000 44 11 
Cauchy’s method 0.9267 0.0000 44 11 

CR theorem - 0.0000 48, 53 24, 23 
Least squares method - 0.0000 100 25 

QMF method 0.2135 0.0000 100 25 
Iterative method 0.3294 0.0000 100 25 

Orthogonal polynomial approach 2.6992E-4 0.0000 100 25 
Analog frequency approach              - 0.0000 100 25 

 
 
Example 2: A Single frequency with noise 

The same signal as in Example 1 has been considered and additive white Gaussian noise 
(AWGN) has been added.  The model for the noise signal is described by 
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                                     [ ])1,0()1,0(2 iNNPNoise noise += ,                                             (3-8-3) 

 
where noiseP  is the noise power and N(0,1) follows a normal distribution with unit variance 
and zero mean.  The signal model is defined by 
 
                                            ( ) Noiseexf kxi

k += ⋅ 5.3210 π . 
 
Table 3.8.2 presents the probability of detection for each method as a function of the 
power associated with the noise process. We assume that a target has been detected when 
the computed spectrum has a peak which corresponds to the appropriate cell number for 
the target.  Total number of trials for each method used to compute the probability of 
detection is 100.  With an increase in SNR, the probability of detection increases as 
expected. 
     

Table 3.8.2 Result of Example 2.  max4 ff s =  with a single frequency and additive AWGN 
Probability of detection  

 
Methods SNR [dB] 

 0       5        10     15     20     25 

 
Number 
of data 

 
Target cell number 

Lagrange polynomial 0.97   1.00  1.00  1.00  1.00 1.00 44 11 
Cauchy’s method 0.18   0.27  0.58  0.70  0.99 1.00 44 11 

CR theorem 1.00   1.00  1.00  1.00  1.00 1.00 48, 53 24, 23 
Least squares method 1.00  1.00  1.00  1.00  1.00 1.00 100 25 

QMF method 1.00  1.00  1.00  1.00  1.00 1.00 100 25 
Iterative method 1.00  1.00  1.00  1.00  1.00 1.00 100 25 

Orthogonal polynomial approach 0.00  0.00  0.00  0.00  0.00 0.00 100 25 
Analog frequency approach 1.00  1.00  1.00  1.00  1.00 1.00 100 25 

  
 
Example 3: Multiple frequency signals and max4 ffs =  
 
In this example, the signal has 5 frequency components 
 
                     ( ) kkkkk xixixixixi

k eeeeexf 5.328.224.1205.1235.02 629810 ⋅⋅⋅⋅⋅ ++++= πππππ  
 
We assumed that the last component, kxie 5.326 ⋅π , is the signal of interest (SOI) and the other 
components are interference. The frequency scanning is performed from 2Hz to 15Hz 
(equivalent from 14th to 100th cell in the frequency domain response) since the major 
interfering signals are located below 2Hz. The time domain signal and the corresponding 
frequency domain response are shown in Figure 3.8.2. Table 3.8.3 is the result of the 
simulations. The CR theorem approach has been deleted from the Table since it can only 
deal with a signal having a single frequency component. The highest degree of polynomial 
for the Cauchy’s method and for the Lagrange polynomial technique has been a bit higher 
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than in Example 1 since for Example 2 the signal has a stronger low frequency component 
than in Example 1.   
 
Example 4: Multiple frequency signal with noise 

For this example, the signal has five frequency components and is given by 
 
               ( ) noiseeeeeexf kkkkk xixixixixi

k +++++= ⋅⋅⋅⋅⋅ 5.328.224.1205.1235.02 629810 πππππ  
 
The noise model is the same as in (3-8-3) and the SOI is the same as in Example 3. The 
results are presented in Table 3.8.4 using 100 trials.  Except for the Cauchy’s method, all 
the other methods provided acceptable results for different values of the SNR. Because 
Cauchy’s method provides a fit to the data through the use of rational polynomials, it 
cannot precisely fit the noisy data that changes rapidly with time.  
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Figure 3.8.2 Sample signal for Example 3 
 

Table 3.8.3 Summary of the results for Example 3.  max4 ff s =  with 5 signal components 

 
Methods 

Error1 
(time domain) 

Error2 
(frequency domain) 

Number of 
data 

Target cell 
number 

Lagrange polynomial 0.0454 0.0000 44 11 
Cauchy’s method 0.0755 0.0000 44 11 

Least squares method - 0.0000 100 25 
QMF method 0.0785 0.0000 100 25 

Iterative method 0.0626 0.0000 100 25 
Orthogonal polynomial approach 7.1196E-5 0.0000 100 25 

Analog frequency approach - 0.0000 100 25 
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Table 3.8.4 Summary of results for Example 4.  max4 ff s =  with 5 signal components and AWGN 

Probability of detection  
 

Methods SNR [dB] 

0        5      10     15     20     25 

 
Number of 

data 

 
Target cell 

number 

Lagrange polynomial 0.97  1.00  1.00  1.00  1.00  1.00 44 11 
Cauchy’s method 0.62  0.75  0.83  0.90  0.80  0.88 44 11 

Least squares method 1.00  1.00  1.00  1.00  1.00 1.00 100 25 
QMF method 1.00  1.00  1.00  1.00  1.00 1.00 100 25 

Iterative method 1.00  1.00  1.00  1.00  1.00 1.00 100 25 
Orthogonal polynomial approach 0.00  0.00  0.00  0.00  0.00 0.00 100 25 

Analog frequency approach 1.00  1.00  1.00  1.00  1.00 1.00 100 25 
 
 
     In summary, when the sampling frequency is high compared to the highest frequency 
content of the signal, most of the methods presented in this report can be applied to 
estimate the spectrum of a nonuniformly sampled data sequence. But this case is of little 
use to the radar community since the maximum resolvable Doppler frequency is not very 
large as seen from (2-10).  In the next case we will increase the signal frequencies (or 
decrease the average sampling rate) and will observe which approach has a better 
performance. 
 
3.8.2   Case 2: max2 ff s =  
     When the sampling frequency equals twice the value of the maximum signal 
frequency, all polynomial methods approximating the time domain samples cannot be 
used since they need smaller sampling periods.  Moreover, the results of the QMF method 
is only valid for the case when the average sampling rate is higher than the Nyquist 
sampling rate and its results will degrade in accuracy if it is less than or equal to the 
Nyquist sampling rate. Only three methods, the Least squares method, the CR theorem 
method and the analog frequency approach can be used for this particular case. In this 
example, the other conditions are the same as in case 1 except for the value of the signal 
frequency. 
 
 
Example 5:  
 
The signal used in this case is given by ( ) kxi

k exf 7210 ⋅= π  and the results are given in 
Table 3.8.5.  All the three methods yield good results.  (3-8-1) and (3-8-2) has been used 
to get the error estimate. 

 
 

Table 3.8.5  Summary of the results for Example 5.  max2 ff s =  with a single frequency 

 
Methods 

Error1 
(time domain) 

Error2 
(frequency domain) 

Number of 
data 

Target cell 
number 

CR theorem - 0.0000 48, 53 0,46 
Least squares method - 0.0000 100 50 

Analog frequency approach - 0.0000 100 50 
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Example 6: In this case, the signal is given by  ( ) Noiseexf kxi
k += ⋅7210 π  and the noise is 

computed using (3-8-3). The results are given in Table 3.8.6.  All three methods yield 
good results. 
 

Table 3.8.6 Summary of the results for Example 6. max2 ff s =  with a single frequency and AWGN  

Probability of detection  
 

Methods SNR [dB] 

 0       5      10     15     20    25 

 
Number of data 

 
Target cell 

number 

CR theorem 1.00  1.00  1.00  1.00  1.00 1.00 48, 53 0, 46 
Least squares method 1.00  1.00  1.00  1.00  1.00 1.00 100 50 

Analog frequency approach 1.00  1.00  1.00  1.00  1.00 1.00 100 50 
 

 
Example 7:  In this case the signal is of the form 
 
                  ( ) kkkkk xixixixixi

k eeeeexf 726.528.221.227.02 629810 ⋅⋅⋅⋅⋅ ++++= πππππ  
 
and the results are given in Table 3.8.7.  The clustering algorithm was not used in this 
example when using the method based on the CR theorem since there are many frequency 
components, and therefore only the Least squares and the analog frequency approach can 
provide acceptable results. 

 
Table 3.8.7 Summary of results for Example 7.  max2 ff s =  with five signal frequencies 

 
Methods 

Error1 
(time domain) 

Error2 
(frequency domain) 

Number of 
data 

Target cell 
number 

Least squares method - 0.0000 100 50 
Analog frequency approach - 0.0000 100 50 
 
 
Example 8:  In this example, the signal plus noise is described by 
 
            ( ) Noiseeeeeexf kkkkk xixixixixi

k +++++= ⋅⋅⋅⋅⋅ 726.528.221.227.02 629810 πππππ  
 
and the results are given in Table 3.8.8. The clustering algorithm was not used for the 
method based on the CR theorem as in this example there are many signals at different 
frequencies, and therefore only the Least squares method and the analog frequency 
approach yield good results. 
 
Example 9:  Multiple signal frequencies with added noise and ground clutter 
 
In this case, the signal has 5 frequency components along with additive Gaussian noise 
and ground clutter. 
 
       ( ) kkkkk xixixixixi

k eeeeexf 5.328.224.1205.1235.02 629810 ⋅⋅⋅⋅⋅ ++++= πππππ  + noise + clutter. 
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Table 3.8.8 Summary of results for Example 8.  max2 ff s =  with 5 signal frequencies and AWGN 

Probability of detection 
 

 
 

Methods SNR [dB] 

    0        5      10     15     20     25 

 
Number of data 

 
Target cell 

number 

Least squares method 0.97  1.00  1.00  1.00  1.00 1.00 100 50 
Analog frequency approach 1.00  1.00  1.00  1.00  1.00 1.00 100 50 

 
The clutter model is given by  
                                                      ( ) 2)1.0(2000 ωω −= eC                                              (3-8-4) 
 
and the corresponding frequency spectrum is shown in Figure 3.8.3.  The noise model is 
the same as in (3-8-3) and the SOI is the same as in Example 3.  The results are given in 
Table 3.8.5 by using 100 trials.  The frequency is scanned from 2Hz to 7.5Hz (equivalent 
from 14th to 50th cell in the frequency domain response) since the major portion of the 
interference and the ground clutter is located below 2Hz.  The simulation result is given in 
Table 3.8.9. 
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Figure 3.8.3 Model for a ground clutter (evenly sampled data) 

 
Table 3.8.9 Summary of the results for Example 9.  max2 ff s =  with 5 signal frequencies along with 

AWGN and ground clutter. 
Probability of detection 

 
 
 

Methods SNR [dB] 

 0       5      10     15      20    25 

 
Number of data 

 
Target cell 

number 

Least squares method 1.00  1.00  1.00  1.00  1.00 1.00 100 50 
Analog frequency approach 1.00  1.00  1.00  1.00  1.00 1.00 100 50 
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     In summary, when the sampling frequency is the same as the Nyquist sampling rate of a 
real signal, only three methods can be applied to evaluate the spectrum of a nonuniformly 
sampled data.  In this case, it is possible to achieve a higher resolution as illustrated in (3-
4-12).  By using the three methods illustrated in this case, 10-20 times performance 
enhancement in terms of the maximum resolvable Doppler can easily be obtained. As 
mentioned earlier, the method based on the CR theorem cannot be used if multiple signals 
exist or if there is ground clutter. In the next example, we will further increase the number 
of signal frequencies and will observe which approach has a better performance. 
 
3.8.3   Case 3: maxs ff <  
     When the average sampling frequency is less than the maximum signal frequency, only 
the Least squares method and the clustering algorithm can be used.  All other conditions 
remain the same as in case 1 and 2 except for the signal frequency.   
 

Example 10: For this example max3
1 ff s =  with a single signal frequency. 

The data is given by   
 
                                                    ( ) kxi

k exf 42210 ⋅= π  
 
and the results are given in Table 3.8.10.  All the three methods yield good results.  Here, 
(3-8-1) and (3-8-2) have been used to obtain an estimate of the error in the time and 
frequency domain. Note that the error in the clustering algorithm is due to the FFT of the 
data samples, which do not match exactly to the signal frequency.  
 

Table 3.8.10 Summary of results for Example 10.  max3
1 ff s =  with a single frequency 

 
Methods 

Error1 
(time domain) 

Error2 
(frequency domain) 

Number of 
data 

Target cell 
number 

CR theorem - 4.4881E-4 48, 53 0,13 
Least squares method - 0.0000 100 300 

 
 
Example 11:  In this case, ( ) Noiseexf kxi

k += ⋅42210 π   and the noise are given by (3-8-3).  
The results are given in Table 3.8.11.  Both methods yield good results.  

 

Table 3.8.11 Summary of the results for Example 11.  max3
1 ff s =  with a single frequency and 

AWGN  
Probability of detection 

 
 
 

Methods SNR [dB] 

0        5       10    15     20     25 

 
Number of data 

 
Target cell 

number 

CR theorem 1.00  1.00  1.00  1.00  1.00 1.00 48+53 0,13 

Least squares method 1.00  1.00  1.00  1.00  1.00 1.00 100 300 
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Example 12:  In this case, the signal is of the form 
 
                  ( ) kkkkk xixixixixi

k eeeeexf 4226.3328.1626.1222.42 629810 ⋅⋅⋅⋅⋅ ++++= πππππ  
 
and only the Least squares method can be used.  The results are given in Table 3.8.12. 
 

Table 3.8.12 Summary of the results for Example 12.  max3
1 ff s =  with 5 signal frequencies. 

 
Methods 

Error1 
(time domain) 

Error2 
(frequency domain) 

Number of 
data 

Target cell 
number 

Least squares method - 0.0000 100 300 
 
 
Example 13:  The signal is given by 
 
              ( ) Noiseeeeeexf kkkkk xixixixixi

k +++++= ⋅⋅⋅⋅⋅ 4226.3328.1626.1222.42 629810 πππππ  
 
and the noise is characterized as in (3-8-3) and the SOI is same as in Example 3. The 
results from 100 trials are described in Table 3.8.13.  
 

Table 3.8.13 Summary of the results for Example 13.  max3
1 ff s =  with signal frequencies and 

AWGN.  
Probability of detection  

 
Methods SNR [dB] 

0      5      10     15      20      25 

 
Number of data 

 
Target cell 

number 

Least squares method 0.81  0.97  1.00  1.00  1.00 1.00 100 300 
 
 
 
Example 14: The signal has 5 frequency components including Gaussian noise and 
ground clutter has been added so that 
 
         ( ) kkkkk xixixixixi

k eeeeexf 4226.3328.1626.1222.42 629810 ⋅⋅⋅⋅⋅ ++++= πππππ + noise + clutter 
 
The noise and the ground clutter are the same as described by (3-8-3) and (3-8-4) and 
other conditions are similar to the previous example.  The simulation result is given in 
Table 3.8.14. 
       In summary, when the sampling frequency is much less than the highest frequency of 
the signal, only the Least squares method and the CR theorem approach can be applied to 
compute the spectrum of a nonuniformly sampled data sequence.  In the presence of 
ground clutter only the Least squares method can be used. The performance enhancement 
in terms of the maximum resolvable Doppler frequency is given by (2-11, 2-14).  
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Table 3.8.14 Summary of the results for Example 14.  max3
1 ff s =  with 5 signal frequencies with 

added AWGN and ground clutter added. 
 

Probability of detection  
 

Methods SNR [dB] 

0      5      10     15      20      25 

 
Number of 

data 

 
Target cell 

number 

Least squares method 0.75  0.80  0.99  1.00  1.00 1.00 100 300 
     
         
3.8.4   Comparison between the Least Squares Method and the FFT 
     From the results of the previous section, when the Doppler increment due to a multiple 
PRF system needs to be large, that is the maximum Doppler exceeds the average sampling 
rate, only the clustering algorithm based on the CR theorem and the Least squares method 
can be used. The results from both of the methods are compared in terms of stability to 
noise in this section. The quality of performance depends on specific situations. We 
consider a test signal which is located at 10kHz with unit amplitude sampled by 4 PRFs of 
1kHz, 1.35kHz, 1.6kHz and 1.7kHz. Gaussian white noise having real and imaginary 
components with equal power density has been added to the signal as in equation (3.8.3). 
The signal has also been sequentially sampled at 32 sampling points by using all the PRFs. 
We assume that an error occurred if the amplitude of the sidelobe is larger in magnitude 
than that of the actual the signal. The result shows that the Least squares approach 
outperformed the method based on the CR theorem and the FFT method.  Figure 3.8.4 is a 
plot of the increase in the noise power versus the probability of false alarm for both the 
methods and an error occurs when the maximum does not occur at the real signal 
frequency. 1000 simulations have been carried out to get the estimate of the probability 
density function. Around –2.5 dB of SNR, the CR theorem starts to fail and around –5 dB 
of SNR, the Least squares method starts to fail. Note that only one false alarm of any of 
the 4 PRF may lead to a failure of the method based on the CR theorem (clustering 
algorithm) method. Therefore the Least squares method outperformed the method based 
on the CR theorem by 2.5dB of SNR.  If we consider a 5 or 6 PRF system, the Least 
squares method will provide better results than the method based on the CR theorem. 
 
 
3.8.5   Operation Count 
     The speed of computation associated with each algorithm is also an important factor.  
To obtain a response at a single frequency cell, a FFT based method needs logN 
multiplications where N is the number of data samples. Table 3.8.15 shows the operation 
count for each method. A filtering operation needs 2 FFT and one vector multiplication 
and requires 2NlogN + N computation for the evaluation of the frequency domain 
response. A matrix inversion needs of the order of 3N  operations and the Hilbert 
transform needs 2NlogN + N operations to evaluate the frequency spectrum. The method 
based on the CR theorem is the fastest algorithm and the Least squares method is also 
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within an acceptable range. The other techniques require )( 3NO  operations and hence the 
computational complexity becomes large when N becomes a large number.   
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Figure 3.8.4 Comparison of the results between the Least squares method and the method based on the CR 

theorem and FFT. A false alarm occurs when the sidelobe level is greater than the mainlobe. As SNR 
decreases the Least squares method outperforms the FFT method by about 2.5 dB. 

 
 

Table 3.8.15 Operation count of each method. 
 

 
Methods 

Operation count From equation 

Lagrange polynomial )( 3NO  (3-1-1), FFT 

Cauchy’s method )( 3NO  Singular value decomposition, 

CR theorem )log( NNO  (3-2-28), FFT 
Least squares method )( 2NO  (3-3-17), Hilbert transform 

QMF method )( 3NO  Matrix inversion, filtering 

Iterative method ×)( 3NO Number of iterations (3-5-8), (3-1-1), filtering 

Orthogonal polynomial approach )( 3NO  (3-6-8), Matrix inversion 

Analog frequency approach )( 3NO  (3-7-6), Matrix inversion 

 
 
 

CHAPTER 4:  CONCLUSIONS 
 
     This report addresses the problem of estimating the spectrum from a set of 
nonuniformly spaced data for applications in a multiple PRF radar system. The benefits of 
using a direct spectrum analysis to a set of nonuniformly spaced data instead of using a 
FFT applied to the method based on the CR theorem has been outlined. The direct 
spectrum analysis can detect multiple targets quite easily in the presence of the ground 
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clutter as this is the only method that can handle signals embedded in interferences which 
are of similar strengths as the target. 
     To obtain the spectrum from nonuniformly sampled data various methods have been 
studied and compared with each other.  The presented methods are: 
• Polynomial interpolation (Lagrange and Cauchy type) 
• Chinese remainder (CR) theorem along with a clustering algorithm 
• Least squares curve fitting of a nonuniformly spaced complex sequence 
• Multi-resolution analysis (QMF analysis)  
• Iterative method 
• Orthogonal polynomial expansion (Legendre and Hermite polynomials) 
• Estimation of the analog frequency 
     The numerical simulations have been performed in terms of different frequency 
components of the signal for each method. When the frequency of the signal is smaller 
than the sampling frequency, most of the methods presented including the interpolation 
methods yield acceptable results. As the frequencies in the signal come close to the 
sampling frequency, most of the time domain interpolating techniques fails. The Least 
squares method, the method based on the CR theorem and the analog frequency technique 
can successfully analyze signals which are close to the sampling   frequency.   If the signal 
frequency is higher than the average sampling rate, only the Least squares method and the 
method based on the CR theorem approach can be used for the analysis of the data. If 
there exists ground clutter along with multiple signals, only the Least squares method can 
be used to analyze the nonuniformly spaced signal. 
     Except for the time domain interpolation technique, the polynomial interpolation 
method and the orthogonal polynomial expansion method, all other methods are quite 
robust to AWGN type of noise.   
     Table 4.1 summarizes the characteristics of all the methods.  Here, the number of time 
domain data equals N. The number of frequency domain samples is also equal to N. The 
number of PRF equals P and all the PRFs are considered to be relatively prime numbers 
for simplicity. Performance enhancement is given in terms of equation (1-4) when 
compared to a single PRF system. The third and forth columns in Table 4.1 represent 
whether a given method can detect a target successfully in the presence of interferences 
and/or ground clutter. 
     The following areas of research may be of interest in pursuing in the future.  They are 
listed as follows: 

• Combination of the various algorithms presented in this report for enhancing the 
estimation of the Doppler frequency.  

• Extension of the evaluation of the spectrum in the two-dimensional Doppler and 
Range domain by using nonuniformly sampled data. 

• Use of an adaptive filter algorithm  
• Simulation using real data from a practical radar system which often encounters 

non-   stationary or non-homogeneous environments.    
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TABLE 4.1 SUMMARY OF THE CHARACTERISTIC OF EACH METHOD 
 

Method Operation 
count  

Performance 
enhancement  

Multiple 
interferences 

Burst in the 
clutter band

Polynomial interpolation 
method 

)( 3NO  

ref

i
PRF

PRF
8
∑<  

Yes Yes 

Least square method )( 2NO  
ref

i
PRF

)PRF.(m.c.l  
Yes Yes 

QMF method )( 3NO  

ref

i
PRF

PRF∑  
Yes Yes 

Orthogonal Expansion  )( 3NO  

ref

i
PRF

PRF
8
∑<  

Yes Yes 

Analog frequency method )( 3NO  

ref

i
PRF

PRF∑  
Yes Yes 

CR theorem )log( NNO  

ref

i
PRF

)PRF.(m.c.l  
No No 
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Appendix  A:  The Sampling theorem for a randomly sampled 
data 
 
     If the sampling of the data were to be completely random, and a Poisson process, then 
the spectrum would be completely free from aliasing.  This can be shown from the 
development of the Fourier transform as applied to a uniformly spaced discrete sequence. 
Consider a uniformly sampled signal ( )nTx  as 
 

                                                       ( ) ( ) ( )∑
∞

−∞=

−=
n

nTttxnTx δ ,                                       (A-1) 

 
Then its Fourier transform is given by 
 

                                        ( ) ( ) dtenTxX nTj∫
∞

∞−

−= ωω ( )∑
∞

−∞=

−=
n

nTjenTx ω .                       (A-2) 

 
The Fourier transform is periodic since 
 

( )∑
∞
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⎟
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⎞

⎜
⎝
⎛ +−

=⎟
⎠
⎞

⎜
⎝
⎛ +

n

nT
T

j
enTx

T
X

π
ωπω

22 ( )∑
∞

−∞=

−−=
n

njnTjenTx πω 2 ( )∑
∞

−∞=

−=
n

nTjenTx ω ( )ωX= . 

                (A-3) 
 
For the case of the nonuniformly sampled data, the Fourier transform will be defined from 
        

                                            ( ) ( ) dtetxX ntj
n∫

∞

∞−

−= ωω ( )∑
∞

−∞=

−=
n

tj
n

netx ω .                         (A-4) 

 
Here, ( )ωX  is periodic only when the exponential part of ( )ωX  is periodic as shown in 
the uniformly sampled case.  That is, )2( πωω += njni tjtj ee  should hold for all nt .  If the time 
steps are not deterministic quantities then the probability of nit and njt  having the same 

time increments, 
ω
π2 , as for the uniformly sampled case, for the entire time duration of the 

signal will be zero. Therefore ( )ωX  is not periodic in ω  and ( )tx  does not need to be a 
band-limited sequence that leads to an alias free condition. 



 

 

 

76

Appendix  B:  Matrix Pencil Method (MPM) 
 
     MPM is a method to fit a uniformly spaced data sequence by a sum of complex 
exponential. Sarkar and Hua [7, 8] described in details this method. It is summarized here 
for completeness. The sampled signal ( )x kTs  is to be modeled by a sum of complex 
exponentials, i.e., 

                                               ( )x kT R e R zs i
s kT

i

M

i i
k

i

M
i s= =

= =
∑ ∑

1 1
,                                        (B-1) 

 
where Ri  =  Residues or complex amplitudes, 
            s ji i i= − +α ω , 
           αi  =  Damping factors, 
           ωi  =  Angular frequencies, 
         e zs T

i
i s =      for i = 1, 2, …, M. 

The objective is to find the best estimates of M, Ri  and zi  from ( )x kTs . 

     We can define matrices [ ]Y1  and [ ]2Y  as follows (Assume we have N sampled data 
points):   
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where L is called the pencil parameter. L is chosen in between N/3 to N/2 for efficient 
noise filtering [7].  
     Since we do not know how many frequency components exist in the signal, the number 
of estimated frequencies M should be determined using some criteria. Typically the 
singular values beyond M are set equal to zero.  The way M is chosen is as follows [8]. 
Consider the singular value σ c  such that 

                                                              
σ
σ

c p

max
≈ −10 ,                                                     (B-4) 

 
where p is the number of significant decimal digits in the data.  One can write 
 
                                                      [ ] [ ][ ][ ]Y Z R Z1 1 2= ,                                                    (B-5) 
 
                                                   [ ] [ ][ ][ ][ ]Y Z R Z Z2 1 0 2= ,                                                (B-6) 
 

                                    [ ]
( ) ( ) ( )

( )

Z
z z z

z z z

M

N L N L
M
N L

N L M

1
1 2

1
1

2
1 1

1 1 1

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥− − − − − −

− ×

L

L

M M O M

L

,                      (B-7) 

 

                                                [ ]

( )

( )

( )

Z

z z
z z

z z

L

L

M M
L

M L

2

1 1
1

2 2
1

1

1
1

1

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

−

−

−
×

L

L

M M O M

L

,                                     (B-8) 

 
                                                 [ ] [ ]Z diag z z z M0 1 2= , , ,L ,                                             (B-9) 
 
                                               [ ] [ ]R diag R R RM0 1 2= , , ,L .                                          (B-10) 
 
Consider the matrix pencil 
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                                          [ ] [ ] [ ][ ] [ ] [ ]{ }[ ]Y Y Z R Z I Z2 1 1 0 2− = −λ λ .                             (B-11) 
 
Therefore λ = zi , for i = 1, 2, …, M  would be the exponentials determined from the 
generalized eigenvalue problem, 
 
                                                                [ ] [ ]12 YY λ− .                                                  (B-12) 
 
It can be shown that this is the same as solving the ordinary eigenvalue problem  
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+  is the Moore-Penrose pseudoinverse of [ ]Y1  which is defined by 
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       Once λ = zi  are known, the residues Ri are solved for from the following least square 
problem 
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The frequency component is computed from 
 
                                                           ( )[ ]ω i iz= Im ln                                                   (B-16) 
 
and the magnitude Ai for a single frequency ω i  is evaluated from 
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Appendix  C:  Proof of (3-5-6) 
 
Let A PQ=  and note that 
 

( ) ( )Re , Re ,Af Ag f g Qf Qg Pf Pg− − = − − ( )= − −Re ,Qf Qg f g =≥ −k f g1
2
    (C-1) 

 
for all f g, ∈κ  since P  is self-adjoint operator. 

     The equation H Af=  is equivalent to f Af=
~

, where cAffchfA −+=
~

 and c  is 

any nonzero constant.  The following calculation shows that A
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The Schwartz inequality shows that the last equation can be stated as 
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Thus 
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With f A h= −1

1  and g A h= −1
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                                                     h h k A h A h1 2 1

1
1

1
2

2
− ≥ −− − .                                   (C-6) 
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Appendix  D:  Proof of Uniqueness of the Solution 
 
     Let f g, ∈κ  and let Q  be a mapping of κ into H such that ( )Qf Qg f g− −,  vanishes 
only if f g= .  Then if the equation h PQz=  has a solution z ∈κ , it is unique. 
Proof: Assume that PQz PQz1 2=  where z z1 2, ∈κ .  Since P  is a self-adjoint operator, 
                                 
    ( ) ( )Qz Qz z z Qz Qz Pz Pz1 2 1 2 1 2 1 2− − = − −, , ( )= − −PQz PQz z z1 2 1 2, = 0.            (D-1) 
 
Hence z z1 2= . 
 
 
 

Appendix  E:  Proof of (3-5-12) 

 
     The left-hand side of (3-5-12) can be written as  
 

( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]P x t x t PQ x t x t x t x t PQ x t x tk k k k k k k k− − − = − + −− − − −1 1

2

1

2 2
1

2
λ λ          

                                                   ( ) ( )[ ] ( ) ( )[ ]− − −− −∫2 1 1λ P x t x t PQ x t x t dtk k k k .            (E-1) 
  
We want to show that there exist positive real numbers k1  and k2  such that  
 
                ( ) ( )( ) ( ) ( )( ) ( ) ( )P x t x t PQ x t x t dt k x t x tk k k k k k− − ≥ −− − −∫ 1 1 1 1

2
                  (E-2) 

 
and 
 

                                ( ) ( )( ) ( ) ( )PQ x t x t k x t x tk k k k− ≤ −− −1

2

2 1

2
.                                 (E-3) 

 
To prove (E-2), we first note that  
    

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )P x t x t PQ x t x t dt x t x t Q x t x t dtk k k k k k k k− − = − −− − − −∫ ∫1 1 1 1 ,       (E-4) 
 
because 
                                                          P P2 = , 
                                                         Px xk k= . 
 
Since the operator P is self-adjoint (i.e., ( ) ( )Px ydt x Py dt∫ ∫= ), (E-4) can be rewritten as  
 

              ( ) ( )( ) ( ) ( )( ) ( ) ( )[ ]P x t x t PQ x t x t dt x t x tk k k k k i k i
i

− − = −− − −∫ ∑1 1 1

2
.                  (E-5) 
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For a band limited signal x(t) one can find positive numbers A and B which satisfy   
          

                                                        
( )

( )
A

x t

x t
B

i
i≤ ≤
∑ 2

2 .                                                 (E-6) 

Therefore  
                   
                        ( ) ( )( ) ( ) ( )( ) ( ) ( )P x t x t PQ x t x t dt A x t x tk k k k k k− − ≥ −− − −∫ 1 1 1

2
              (E-7)   

 
and  k1 =A exist. 
To prove (E-3), one can write  
         

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )PQ x t x t PQ x t x t x t x t t t dtk k k k k k i
i

− = − − −− − −∫ ∑1

2

1 1 δ  

                                    ( ) ( )( ) ( ) ( )( ) ( )= − − −− −∫∑ PQ x t x t x t x t t t dtk k
i

k i k i i1 1 δ  

                                    ( ) ( )( )[ ]= − −∑ PQ x t x t tk k
i

1 ( ) ( )( )= − −t x t x ti k i k i1                                                          

                                     ( ) ( ) ( ) ( )( )≤ −
⎡

⎣
⎢

⎤

⎦
⎥ −

⎡

⎣
⎢

⎤

⎦
⎥− − =∑ ∑x t x t PQ x t x tk i k i

i
k k t t

i
i1

2
1

2

1

2
1

2

|  

                                     ( ) ( ) ( ) ( )( )≤ − ⋅ −− −B x t x t PQ x t x tk k k k1 1 .                                (E-8) 
 
We have 
 
                                      ( ) ( )( ) ( ) ( )PQ x t x t B x t x tk k k k− ≤ −− −1 1 .                                (E-9) 
 
Therefore k2 =B exist.  From (E-1)-(E-3), we get  
 

                     ( ) ( )[ ] ( ) ( )[ ] ( ) ( )P x t x t PQ x t x t r x t x tk k k k k k− − − ≤ −− − −1 1

2

1

2
λ             (E-10) 

 
and 
                                                        12

2 21 kkr λλ −+= .                                            (E-11) 
 
In order to satisfy (3-5-12), r has to be in the region 0 1≤ <r .  Given a particular k1  and 
k2 , λ  has to fall within the following region of convergence for the iterative relationship 
given in (3-5-8) to hold. 

                                                             0
2 1

2
< <λ

k
k

,                                                    (E-12) 

                                                                  k k1
2

2≤ .                                                     (E-13) 
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LIST OF PRINCIPLE SYMBOLS 
 
c             speed of light, 8103 ⋅=c m/sec  

t∆  round trip transmit time of the wave transmitted and reflected back to the  
               origin 

rf            frequency of the transmitted signal 

maxr          maximum range without any ambiguity 

maxV         maximum Doppler velocity without any ambiguity 

maxf         maximum Doppler frequency 
λ0            wavelength corresponding to the carrier frequency of the radar 
( )a t         envelope of the signal 

Fc           carrier frequency 
( )Ψ t     phase function 

v             target moving at speed  
α            scale factor controlled by the Doppler effects 

dF             Doppler velocity of the target  

pT           width of the pulse in a period 
T            period of the base-band pulse 

( )α,
^

tΛ   complex ambiguity function of ( )g t    
( )α,tg     received signal 

iPRF       i-th pulse repetition frequency 
ID           maximum Doppler increment 
IR           maximum range increment 

2PRF      pulse repetition frequency for comparison to single PRF system 
l.c.m       Least common multiplier 
g.c.d       greatest common divisor 

kx           sampling points  

(fx

( )f xk     value of the signal at xk  
f 0           target Doppler  
x0           target range 

matmat BA , matrices used in the Cauchy’s method  
p, q         degrees of numerator and denominator used in the Cauchy’s method  
( )jC       error in the clustering algorithm  

τ             delay parameter enables to select any arbitrary origin of time 
F             mean square difference in the Least square method 
( )ωE      spectrum estimate using a Least square method 

A            unknown magnitudes vector 
B             matrix used to get the magnitude vector A 
U, V       intermediate steps in the QMF approach 
H           band-pass filter 
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M           total number of time steps in one period where decimation repeatedly   
              occurs 
N            number of known samples in the M time intervals 
Q            band-limiting operator (low pass filter),    
P             ideal nonuniform sampling operator 
λ            coefficient of iterative method  

kT            uniform sampling point with average interval  
∆Tk         k-th interval of uniform average spacing 
hn           associate Hermite function of degree n 
Hn          Hermite function of degree n  

,1l  2l     scaling factors  

nP           Legendre polynomial of degree n 

mr           m-th deviation from uniform sampling 
( )ωaX    analog spectrum 
( )ωdX   digital spectrum  

Y            matrix used to obtain ( )ωaX  
 
 
 


